
R E PORT DOC U M ENTATIO N PA G E FormApproved
" OMB.o. 0704-0,88

Publicreporting burdenfor this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,searching existing data sources,gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information
includingsuggestions for reducing this burden, to Washington Headquarters Services,Directorate for Information Operations and Reports, 1215Jefferson DavisHighway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget,Paperwork ReductionProject (0704.0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1991 Contractor Report

4 TITLE AND SUBTITLE S. FUNDING NUMBERS

Requirements Analysis Notebook for the Flight Data Systems

Definition in the Real-time Systems Engineering Laboratory
(RSEL)

6. AUTHOR(S)

Richard B, Wray

7.PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)
Lockheed Engineering and Sciences Company
2400 Nasa Road 1

Houston, Texas 77573-3799

9 SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)
National Aeronautics and Space Administration

Lyndon B. Johnson Space Center

Flight Data Systems Division
Houston, Texas 77058

8. PERFORMING ORGANIZATION
REPORT NUMBER

LESC-29702

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR 185698

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 66

12b. DISTRIBUTION CODE

13. ABSTRACT (Max_um 200 words)

A hybrid requirements analysis methodology has been developed, based on the practices
actually used in developing a Space Generic Open Avionics Architecture. During the
development of this avionics architecture, a method of analysis able to effectively
define the requirements for this space avionics architecture was developed. In this
methodology, external interfaces and relationships are defined, a static analysis

resulting in a static avionics model was developed, operating concepts for simulating
the requirements were put together, and a dynamic analysis of the execution needs for

the dynamic model operation was planned. The systems engineering approach was used to
perform a top down modified structured analysis of a generic space avionics system and

to convert actual program results into generic requirements. CASE tools were used to

model the analyzed system and automatically generate specifications describing the
model's requirements. Lessons learned in the use of CASE tools, the architecture and

the design of the Space Generic Avionics model have been established, and a methodology

notebook has been prepared for NASA. The weaknesses of standard real-time methodologies
for practicing systems engineering, such as Structured Analysis and Object Oriented
Ana|ysis, have been identified.

14.SUBJECTTERMS
requirements analysis, space avionics, avionics architecture,

methodology, systems analysis

7 SECURITY CLASSIFICATION
OF REPORT

Unclassified

lB. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OFABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATIONOFABSTRACT
Unlimited

Standard Form 298 (Re_ 2-89)

Pr=_r_bed by _NSiS,d 239-:8
298-_02

L

CHANGE 1 - JANUARY 199_

DOCUMENT CHANGE RECORD

The following table summarizes the change activity associated with this document.

ISSUE AND DATE CHANGE SUMMARY SECTION

2January 6, 1992 Pages 2-2 through 2-10 - The basic

methodology was expanded to

include operating concepts

development, dynamic analysis and

fidelity checking.

Pages 3-6 and 3-15 - Figures were

upgraded to show concurrent

processes.

3

ACKNOWLEDGEMENTS

This document has been produced by Mr. Richard B. Wray of the Lockheed

Engineering & Sciences Company (LESC), with significant inputs from several other

people. Special acknowledgement is given to Mr. Ben Doeckel of LESC for producing

the appendices on naming conventions, in codeveloping the avionics architecture on

which this document is based, and in contributing many ideas for methodology

alternatives. Acknowledgement is also given to Mr. Jack Sassard, Mr. John Stovall

and Mr. Graham O'Neil of LESC for assisting in the development of the avionics

architecture and constructive criticisms of the methodology.

iii

CONTENTS

Section Page

1. INTRODUCTION ... 1-1

1.1

1.2

1.3

1.4

1.4.1

1.4.2

2.

PURPOSE ... 1- 1

REPORT ORGANIZATION i.................................... 1-2

BACKGROUND .. 1-3

KEY CONCEPTS ... 1-5

METHODOLOGY CONCEPTS AND FINDINGS 1-7

ARCHITECTURE CONCEPTS AND FINDINGS 1-8

SYSTEMS ENGINEERING METHODOLOGY IMPLEMENTATION 2-1

2.1

2.2

2.2.1

2.2.2

2.2.3

2.2.3.1

2.2.3.2

2.2.3.3

2.2.4

2.2.4.1

2.2.4.2

2.2.4.3

2.2.5

2.2.5.1

2.2.5.2

2.2.5.3

SYSTEMS ENGINEERING PRO(,';ESS SUMMARY 2-2

REQUIREMENTS DEFINITION ... 2-6

METHODOLOGY ASSUMPTIONS .. 2-6

BASIC METHODOLOGY .. 2-7

USING TOOLS FOR SYSTEMS ENGINEERING 2-11

Multi-tool Use .. 2-13

Types and Quantities of Tools Needed ... 2-14

Tool Output and the Data RePository_ ... 2-16

CONVENTIONAL ANALYSIS APPROACHES ... 2-16

Structured Analysis Approaches .. 2-17

Object Oriented Approach .. 2-19

Interactive Development ... 2-21

HYBRID METHOD FEATURES ... 2-22

OOA Features Needed ... 2-22

Int_rf_,_e Reauirements Definition .. 2-23

Standard .Reauiremen_ ... 2-25

iv

Section

2.2.5.4

2.2.5.5

2.2.5.6

2.2.5.6.1

2.2.5.6.2

2.2.5.6.3

2.2.5.6.4

2.2.5.7

2.2.6

o

Page

Requirements Inheritance .. 2-26

Performance Requirements ... 2-28

Concurrent Engineering Reauirement,_ ... 2-30

Quality Requirements Definition ... 2-33

Timelines and Timing Requirements Definition 2-35

Performance Requirements Definition ... 2-36

Cost Requirements Definition .. 2-37

Hybrid Methodology Requirements Summ_ry 2-38

DIFFERENCES BETWEEN REQUIREMENTS
AND DESIGN APPROACHES .. 2-38

2.2.6.1 Requirements vs. Design Determination ... 2-40

2.2.6.2 Lessons Learned ... 2-42

2.3 REQUIREMENTS PROTOTYPING AND SIMULATION 2-42

2.4 REQUIREMENTS PERFORMANCE ANALY$1,S 2-42

2.5 DESIGN REQUIREMENTS DEFINITION ... 2-43

2.6 OPEN SOFTWARE ENVIRONMENT USF .. 2-43

METHODOLOGY APPLICATION .. 3-1

3.1

3.2

3.2.1

3.2.1.1

3.2.1.2

3.2.2

3.2.2.1

3.2.2.2

GENERIC ARCHITECTURE DEFINITION ... 3-1

REQUIREMENTS ANALYSIS ... 3-3

CASE STATIC HYBRID OBJECT ORIENTED

STRUCTURED ANALYSIS .. 3-4

Data & Control Flow Diagrams .. 3-4

Control State Transition Diagrams ... 3-9

TECHNIQUES FOR REQUIREMENTS ANALYSIS 3-10

Entity Partitioning ... 3-10

Facility to Vehicle Partitioning ... 3-11

V

Section

3.2.2.3

3.2.2.4

3.2.2.5

Page

Operational Thread Use ... 3-13

Ri,_k Management Requirements Definition 3-17

Fault Tolerance/Redundancy Management

Requirements Definition ... 3-17

PROTOTYPING AND SIMULATION IMPLEMENTATION 3-17

PERFORMAN(_E ANALYSIS IMPLEMENTATION 3-17

APPENDICES

A. DEFINITIONS, ASSUMPTIONS AND CONVENTIONS A-1

B. CASE TOOL SUMMARY .. B-1

C. REQUIREMENTS DOCUMENTATION USED .. C- 1

D. NAMING AND DIAGRAMMING CONVENTIONS ... D-1

vi

Table

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

TABLES

Page

STEPS IN THE SYSTEM ENGINEERING PROCESS..............................2-5

REQUIREMENTSSUMMARYFOR DOCUMENTATION...........................2-30

SYSTEM ENTITY REQUIREMENTS SUMMARY.....i.................................2-31

SYSTEM ARCHITECTURE REQUIREMENTS SUMMARY......................2-31

SYSTEM ENVIRONMENT REQUIREMENTSSUMMARY........................2-32

SYSTEM DATA REQUIREMENTS SUMMARY..2-32

SYSTEM QUALITY REQUIREMENTS SUMMARY....................................2-34

SYSTEM TIMELINES AND TIMING REQUIREMENTS SUMMARY2-35

SYSTEM PERFORMANCE REQUIREMENTS SUMMARY2-36

SYSTEMCOST REQUIREMENTSSUMMARY..2-37

vii

Figure

1-1

1-2

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12.

3-1

3-2

3-3

3-4

3-5

3-6

FIGURES

Page

Space Generic Avionics Open Architecture .. 1-11

Space Data System Services Architecture .. 1-12

Conventional Systems Engineering Process i.............................. 2-3

The Hybrid, Object Oriented, Structured
Analysis Methodology .. 2-11

Computer Aided Systems Engineering (CASE) Features 2-13

Structured Analysis Example ... 2-18

Object Oriented Approach Features .. 2-20

Architecture and Software Interfaces .. 2-24

Requirements Inheritance Approach .. 2-27

Example of Applications Requirements for Services 2-29

Relationship of Requirements to Design Activities 2-39

Open Software Environment Model of Applications and Interfaces 2-44

Open Software Environment Interfaces Applied to a
Standard Hardware Architecture ... 2-46

Logical System Requirements Flowdown to Physical
Design Requirements .. 2-48

One View of the Space Generic Architecture with the assumed
processing boundary ... 3-2

Space Generic Avionics Potential Functions Checklist 3-6

Operations Control May Span Alternative Allocations 3-12

Operational Processing Thread for .. 3-14

System Processing Thread for ... 3-15

Fault Handling Architecture Example ... 3-16

viii

Figure

A-1

A-2

D-1

D-2

Page

Potential Process Partitioning included by the Space
Generic Architecture ... A- 1

Hardware Architecture Assumed for the Space Generic Avionics A-

Data Flow Diagram Example .. D-

Data Flow Diagram Application Example .. D-

ix

ACRONYMS

AP

API

AS

BIT

C&T

CASE

CRC

DB

DMS

EE

EEl

EP

F2D

FDIR

LESC

GN&C

HOOSA

JSC

MDP

NASA

OMS

OO

OOA

OS

OSE

OSI

OSK

Application Platform

Application Software

Built-in-Test

Communications and Tracking

Computer Aided Systems Engineering

Control and Reporting Center

Docking/Berthing

Data Management Systems

External Environment

External Environment Interface

Effector Embedded Processor

Functional Flow Diagrams

Fault Detection, Isolation and Recovery

Lockheed Engineering & Sciences Company

Guidance, Navigation and Control

Hybrid, Object Oriented, Structured Analysis

Johnson Space Center

Multiplex Data Processor

National Aeronautics and Space Administration

Operations Management System

Oribt Transfer-to-New Orbit

Object Oriented Analysis

Orbit-to-Surface

Open Software Environment

Open Systems Interconnect

Orbit Station Keeping

PDL

RSEL

SATWG
SDP

SDSS

SGA

SP

SO

SOCS

TBD

VHDL

VHSIC

Program Design Language

Real-time Systems Engineering Laboratory

Strategic Avionics Technology Working Group

Standard Data Processing

Space Data System Services
Space Generic Avionics
Sensor Processor

Surface-to-Orbit

To Be Determined

Very High Description Language

Very High Speed Integrated Circuits

xi

1. INTRODUCTION

The systems engineering methodology is a set of methods being developed by
Lockheed Engineering and Sciences Company which are applicable to systems

development over the entire life cycle of the system. The system life cycle includes:

• Phase A: Conceptual definition of a system within a larger picture of needs (i.e., a

strategic view of the need for a system)

• Phase B: Requirements definition of a system which must produce complete and

consistent requirements.

• Phase C: Design development for a system.

• Phase D: Operations and support for a system.

This methodology notebook covers Phase A, Conceptual Definition and Phase B,

Requirements Definition, and will be developed over several years in an on-going

effort. The other phases of the system life cycle are identified here to establish an

improved contextual understanding of how all analyses tie together to perform systems

engineering.

1.1 PURPOSE

Previous space programs have usually relied upon one space vehicle in development

or flight at a time. In the future, it is likely that multiple space vehicles will be in

development or in flight at the same time. In order to be able to afford the development

of these space vehicles, new and evolutionary approaches to the design of these

vehicles must be developed. Avionics systems are a prime candidate for the

development of evolutionary approaches as there is much commonality between the

functions that must be provided for all space vehicles. This study was begun to

develop a generic methodology for defining avionics architectures that could be

tailored to match the varying requirements of all space vehicles without requiring the

system engineering team for each new vehicle to reinvent the requirements analysis

and design process.

1-1

A methodology is defined as a set of methods, techniques and tools for performing a

defined task. Achievement of such a methodology would be both cost and time

(schedule) efficient for all future space programs using the methodology. This

document is the first step in providing such a methodology for requirements analysis

and design. It identifies a set of alternative static approaches, techniques and types of

automated tools which can facilitate the difficult task of requirements analysis and

design within the overall systems engineering process. Later revisions of this

document will add consideration of dynamic approaches, techniques and tools;

additional requirements analysis issues; and conversion from the requirements

analysis and specification process to the design process.

This study is part of a multi-year effort by Lockheed Engineering and Sciences

Company to define an overall methodology, using a generic architecture for avionics,

which can be applied to all future manned space mission avionics. The approach of

this study is develop the needed methodology by performing an actual requirements

analysis and defining selected elements of the advanced avionics architecture for

future space missions. The architecture being developed is a superset architecture

with all the avionics requirements needed to establish the design of compatible space

platform avionics elements.

This section covers the organization of the notebook, the background of the

development of this methodology, and key concepts derived from the analysis.

1.2 REPORT ORGANIZATION

This document provides the methodology recommended to perform requirements

analysis for space avionics subsystems. Section 1 provides this introduction, covering

the purpose of the document; the background leading to its development; the key

concepts developed in the course of the preliminary analysis; and the definitions,

assumptions, and conventions used in the analysis.

Section 2 provides an overview of the methodology. First, the systems engineering

process (based on the Electronic Industries Association Bulletin SYSB-1) is

summarized. The overall process of requirements analysis recommended by this

document is then detailed, including the basic methodology, the use of tools, the

conventional approaches often used, and features of the hybrid approach being

1-2

recommended. Differences between the requirements and the design features are

explained. The remainder of this section is left to be developed (TBD) for later stages

of the methodology development in FY92.

Section 3 then applies the methodology to the development of the open generic

architecture to provide an example of a specific application of this methodology. The

architecture is summarized. Specific usage of the methodology in performing the

called for static analysis is shown, and specific techniques needed are described.

Additional examples in the remainder of the section are left TBD in later stages of the

methodology development in FY92.

Appendices are provided to identify the definitions, assumptions for the architecture

and the conventions used in developing this methodology. The appendices also

summarize specific findings and guidelines, developed in the course of this task, for

the use of CASE tools, requirements documentation accessed, the generic space

avionics architecture (published under separate cover as volume 2), and the naming

and diagramming conventions which need to be followed.

1.3 BACKGROUND

Johnson Space Center (JSC) initiated the development of this methodology by

Lockheed Engineering and Sciences Company to create a design/analysis

methodology based on practical experience in developing the requirements for an

advanced space systems avionics architecture. The process followed was to define a

Space Generic Avionics (SGA) system architecture, record the process by which this

architecture was developed, document the informal discussions and the resulting

logic/thought processes held on an ad-hoc basis during technical work periods. This

architecture was to be a real requirements architecture with utility in any future space

program or mission. Over a one year period in FY 1991, data was gathered on

existing space programs (i.e., the shuttle and space station) to use as a basis of real

developments so the SGA architecture would not be a "blue sky" approach, but would

be based on reality. This data was used to build the architecture. Almost every

informal meeting, every ad-hoc discussion and every critical or questioning thought

was recorded by keeping a log notebook next to the computer. These notes were then

compiled into documented notes which were the basis for writing this methodology

notebook.

1-3

This architecture development monitored efforts by the Strategic Avionics Technology

Working Group (SATWG) and its contractors to build generic, standard or open

architectures. The results of these efforts were considered in the development of the

SGA architecture. The focus of the SGA architecture was a structure which could hold

all space avionics requirements and insure avionics subsystem compatibility through

compatible requirements. It resulted in a top-down architecture with hooks for every

potential avionics subsystem.

This architecture is not a completed product, rather it is a living

architecture which can continue to grow as more people support it and

more ideas are added to its structure. By this reasoning, the SGA architecture

is a space-function oriented architecture which stresses the operational needs, the

applications required to satisfy those needs, the applications' requirements for

services to enable them to operate, and the allocation of applications and services to

hardware and software. It treats hardware and software as secondary to the

operational and services aspect of a space avionics system.

While the appearance of the SGA architecture is one of software, it is intended to

represent higher level features comprising both hardware and software. Since all

space data systems are so heavily dependent on software, this consideration was a

primary driver to insure effective software requirements, and especially effective

software-to-software and software-to-hardware interface definition.

The leading source of underlying requirements for the SGA architecture (outside of

shuttle and station documentation) was the Space Avionics Requirements Study,

NASM-37588-TD006, 21 October 1990 by General Dynamics Space Systems

Division, as briefed to the SATWG. In particular, the driving requirement for an open

architecture allowing mufti-vendor sources for components, interchangeable and

interoperable elements with reduced complexity and cost and common elements,

where feasible, led to the SGA architecture approach of using common space

applications relying on common operating services. The requirement for a robust,

modular system led to the need to avoid preconceptions on partitioning functions

between subsystems, and to build a structure which can facilitate alternative

allocations to actual flight missions and facilities. The requirement for handling

technology upgrades led to a structure which isolated specific technologies from

requirements implementation as much as possible.

1-4

1.4 KEY CONCEPTS

Some of the key concepts either developed for this methodology or used for this

analysis methodology are described in this section. A number of software and

systems development principles were followed in laying out the analysis practice

recommended in this methodology, including:

° abstraction

• information hiding

• inheritance

• modularity

• robustness

• extensibility

Abstraction is the principle of using only those aspects of an entity, object, operation,

function, process, or other subject which are relevant to the current purpose and

ignoring those aspects not needed to improve analytical focus on the current subject.

This principle simplifies a complex subject to render it more susceptible to analysis. In

object oriented analysis, data abstraction is the principle of defining a data type in term

of the operations that apply to the entities of the type.

Information hiding (also called encapsulation) is the principle used in developing

system structures where components should encapsulate or hide a single

requirements or design decision, with an interface that reveals little of the inner

workings of the system. Software information hiding refers to the technique of making

the external interface to an entity public, but keeping the internal design details hidden

from view. Hiding of the internal design information allows the implementation of the

entity to be changed without requiring the external interfaces of the entity to be

changed. By hiding the internal implementation, changes are easier to make with

minimal rework when system changes are needed.

1-5

I.nheritanCe is the principle of receiving properties or characteristics from an ancestor.

In systems definition, it allows the specification of common attributes and services only

once because they can then be passed to all descendent or referenced subsystems.

A modular requirements architecture is an architecture in which the elements are

autonomous, coherent and organized in a robust structure. Requirements must be

decomposable, understandable, protected and have continuity. Decomposability

means requirements can be broken into smaller pieces with potentially simpler

solutions or at least better understanding and a capability for further decomposition as

needed. Understandability means all requirements related to a subject can be found

and viewed together, and individually and jointly understood by the analysts and

designers. Protection means the architecture limits the effect of abnormal conditions in

design elements at run-time to just the affected modules or at least will limit the

propagation of abnormal conditions. Continuity means that small changes in the

requirement will only cause small changes in the design. Requirements changes

should not cause disproportional changes in the design, and design changes should

be limited to one or a few design modules. Requirements changes should not affect

the architecture of the system, unless the change is one for the architecture directly.

Robustness is the ability of systems to continue functioning in abnormal conditions.

This principle clearly relates to reliability, fault tolerance and fail-safe/operate

concepts. Robustness is more, however, because it addresses the system's ability to

operate in conditions not originally foreseen by the specification without catastrophic

failures, without exhibiting behavior that disturbs the rest of the system, by failing (if

necessary) in a "graceful" manner by terminating cleanly and safely.

Extensibility is the ability of a system to be extended or adapted to new conditions,

changes in specifications or new technology. Extensibility is facilitated by simple

requirements and designs where feasible, minimal complexity (for its own sake) and

decentralization.

As a result of the analysis leading to this methodology, several key concepts and

findings for the methodology and for the architecture used as a case example were

established. These are described below.

1-6

1.4.1 METHODOLOGY CONCEPTS AND FINDINGS

The systems engineering process applies to all phases of the life cycle for a space

program, from concept development, to requirements definition, design and operation.

The major element needed for an effective system to operate is well established

requirements, which are needed in each of the phases of the life cycle. A

methodology has been established in this project, through actual development of an

architecture, to develop good requirements. This methodology is called the Hybrid,

Object Oriented, Structured Analysis methodology. It blends several existing

methodologies into an approach which has been shown to work in practice in defining

the requirements for a major system architecture. The weakness of existing

methodologies (such as Yourdan, Ward-Mellor, etc.) is that they all seem to take an

academic, simplistic view of systems (e.g., an Air Traffic Control system consisting of a

radar, planes, missions, and airports) with no technical backup, or a technical view of a

very small system (such as a screen window) with indepth technical backup but no

relevance to a larger system. Putting them into practice with a realistic large scale

system is very difficult.

Requirements analysis needs automated tool suDp0rt. The tools need to provide basic

structured analysis capabilities, centered on an integrated data repository. A goal in

picking automated tools should be the quality of their support in enabling this

methodology to be implemented. A selection factor should be the accessibility of their

data repository to other tools so that data from one tool can be extracted and passed to

another tool; preferably by using open standards for the data repository structure. No

weight should be given to a tool claiming to be capable of performing all phases of

automated development, since such a claim is far beyond the state-of-the-art in

present tools, and may not be desirable anyway. It seems likely that the tools are

secondary to the quality of the analysts in performing requirements analysis; if so, then

the tools should be selected to enhance the abilities of individual analysts.

The state-of-the-art, analytical techniques to be used require training to gain

understanding of static structured analysis, interface analysis, information modeling,

object oriented analysis, control state analysis, timeline analysis, performance

analysis, dynamic system modeling, and others. Analysts with experience in all these

techniques are not common, and efforts should be established to train experienced

systems engineers in the additional techniques called for in this methodology. One of

1-7

the requirements for such training will be for the Training Department to budget and

bring in experienced training contractors to supplement their in-house capability.

Another key finding is that requirements definition is part of a concurrent engineering

appro.ach, and will require the integrated efforts of engineers with experience in

several different disciplines, from requirements to design, from hardware to software,

and from operation to supportability. Development of an effective requirements model

needs iteration between the concerns of each specialty to insure that the resulting

model is responsive to all discipline concerns. Effective techniques to enable multiple

disciplines to efficiently interact need to be developed.

Develo0ment interface ca.oabilities are needed. Much of the development of

requirements for complex space systems is taking place at geographically disbursed

contractor sites; these distributed requirements need to be capable of being

coordinated on a continuous basis as they are developed. A capability is needed to

acquire working level requirements (in process) from these sites, test them against

each other and a larger model of the system, and to feed back weaknesses and

strengths to the developers of individual requirements sets. This is necessary to avoid

waiting too long before erroneous, deficient, weak or conflicting requirements are

uncovered; the later the correction of requirements, the greater the cost. This implies

some data repository structure or interface standards are needed to insure that

requirements data can be exchanged. It also implies that more frequent technical

interchanges would benefit the development of subsystem requirements, especially if

the interchanges could be working level with minimal preparation time needed to

"pretty up" briefings for "dog and pony" shows.

The development of this methodology is still underway. Additional parts of the

methodology are needed to define complex system requirements completely and

consistently. The parts to be developed next include control requirements definition

techniques, dynamic analysis/modeling and performance techniques.

1.4.2 ARCHITECTURE CONCEPTS AND FINDINGS

An architecture was used as a target to develop this methodology for requirements

analysis. The Space Generic Avionics (SGA) requirements architecture was created

to address generic requirements for an architecture of avionics functions, objects,

processes, data, and capabilities for any future space vehicle. This architecture had to

1-8

provide for a generic space avionics based on open standards. It started with logical

interface requirements at the top level and expanded these requirements at

successively lower levels of definition as the methodology and architecture were

developed. If a function is needed for any space vehicle, then it should be adapted

from a generic form and available in the architecture. Thus, the architecture is a

"shopping list" of all possible avionics elements. This architecture integrates multiple

lower level (or sub-architectures) together to develop a consistent structure which

incorporates functional architectures from the systems development domain,

processing and object oriented architectures from the software domain and hardware

architectures from the hardware domain. These paragraphs summarize key points

with respect to the SGA architecture. For more detail, see Appendix D to be published

in FY92 which will provide more descriptive material and diagrams.

A starting requirement for the architecture was that it be adaptable to all future manned

space missions, including:

• Surface-to-orbit missions to reach either low earth orbit, lunar orbit or mars orbit

from the local planetary surface.

• Docking and berthing operations between adjacent space platforms such as

shuttles arriving at the space station, heavy lift launch vehicles linking with orbiting

vehicles, lunar ascent vehicles mating with their orbiting transfer vehicles, etc.

• Orbit station keeping operations by orbiting platforms maintaining stable orbits

around a planetary body, such as the space station in earth orbit, the lunar transfer

vehicle in moon orbit, or the mars space station in mars orbit.

• Orbit-to-orbit transfers, which may be from low to high earth orbit, from earth to

another planet, from earth to the moon, or from earth (or another planet) into deep

space.

• Orbit-to-surface missions to land on the earth, moon or mars from an orbiting or

arriving space vehicle.

• Fixed surface operations in a fixed base such as on the moon base or mars base,

where such a base may be performing permanently manned complex operations

or just temporarily manned exploration operations.

• Mobile surface operations in rover or similar vehicles moving on the planet surface.

1-9

The SGA Architecture consists of the avionics as a black box surrounded by external

elements with which it interacts. The avionics system includes all hardware, software

and other electronics needed to control and operate the space vehicle, and provides

the coordinated functionality for end-to-end processing in handling the information

needed to know the platform's elements, to control its interaction with its environment,

and to respond to human commands. This avionics structure is shown in figure 1-1.

The SGA Black Box provides the capability to meet the top level user requirements,

i.e., those requirements actually serving to represent user needs.

Within the SGA Black Box are the primary functional entities which enable the avionics

to support and sustain the crew. These primary functional entities are the traditional

applications control subsystems, an operations control application subsystem which

integrates all activities from the traditional applications control subsystems to serve the

crew, a standard data services subsystem to provide support to all the traditional and

operations control subsystems and the crew's display and control subsystem which

enable the crew to interface and direct the avionics. The traditional applications

control entities consist of Electric Power, Environment and Life Support, Payload

Operations, Guidance, Navigation and Control Communications and Tracking Control

Subsystems.

The Space Data System Services (SDSS) entity consists of all services and operating

system entities supporting the crew's avionics subsystems. Figure 1-2 shows the top

level structure of the SDSS architecture.

1-10

1-11

z,-,

(1)

t-
o

r_
Q)
._o
P
Q)

r.D

E
(1)

Or)

m

o

Q.
CO

!

,,¢--

LL

1-12

2. SYSTEMS ENGINEERING METHODOLOGY IMPLEMENTATION

The systems engineering methodology is a set of methods applicable to systems

development over the entire life cycle of the system. The system life cycle is identified

below. The flow of description from Phase A to D is not intended to imply that one

phase is or must be completed before the next starts. The process should be an

iterative process using simulations, prototypes, preliminary designs and test cases as

needed to provide an ever better solution for a system.

• Phase A: Conceptual definition of a system within a larger picture of needs (i.e., a

strategic view of the need for a system)

• Phase B: Requirements definition of a system which must produce complete and

consistent requirements.

• Phase C: Design development for a system.

• Phase D: Operations and support for a system.

The focus of this methodology notebook is on requirements analysis for Phase A and

Phase B, although it also can be applied to definition of detailed design requirements

in Phase C or for the definition of operational and support facilities in Phase D. This

section summarizes the systems engineering process and its analytical methods, with

the emphasis on the methods used in requirements analysis. The other phases are

summarized to establish an improved contextual understanding of how all analyses tie

together to perform systems engineering.

The analysis process needed to perform a successful requirements analysis task does

not consist of just one analysis. There are many types of analysis which must be

performed with the results being integrated into an set of requirements which describe

the technical needs of the users. An analysis of the system environment needed for

the user to enable the requested system to operate effectively must be developed. A

static analysis of the organization of system requirements provides an effective

structure for holding the requirements for designers, but will not be sufficient for them

to be able to assemble the technology into an effectively operable system. An analysis

of quantitative performance needed from the system and its elements must provide

effective goals for designers to target which remain stable during design because they

2-1

are based on the needs of the mission, not the capabilities of technology. In an

electronic system, especially in a real time system such as an avionics system,

analysis and understanding of time and timing requirements are critical to insure that
not only is the system designed to operate as fast as needed, but that it can be

guaranteed to operate as needed.

The methodology must support concept definition, requirements definition at the

systems and subsystems level, definition of the requirements for a design
implementation, requirements for developing prototypes and simulations, and

requirements for analyzing the performance of prototypes and simulations of the actual
intended system or subsystems.

2.1 SYSTEMS ENGINEERING PROC:ESS SUMMARY

The system engineering process requires the performance of a process to develop a

complete set of requirements for an entity that is realizable, within available

technology, consistent with cost and budget, schedule and other constraints. Since

the system engineering process is divided into requirements analysis and systems

design, it is usually necessary to cycle back and forth between them to generate ideas,

develop robustness and test detailed requirements and designs. The process is

iterative and is summarized in figure 2-1.

2-2

..+

\

2-3

The activities typical of the Systems Engineering Process are: functional analysis of

inputs, synthesis of requirements, evaluation and decisions, and description of the

system elements, usually in the form of system or subsystem/segment specifications.

The typical functional analysis relies upon Functional Flow Diagrams (F2D) to show

logical sequences and relationships of operational and support functions at the system

level. F2Ds will show progressively more detail as the project being analyzed moves

from the Concept Development phase to Requirements Definition to Design. More

detail will be added in the way of operating and support functions in the Operations

and Support phase of development. Synthesis is usually described as a process of

developing design approaches or alternative approaches to meeting the

requirements. Block Diagrams are used to develop and portray conceptual schematic

arrangements of system elements meeting system or subsystem requirements.

Evaluation and decision is the tradeoff part of the process during which stated

operating requirements and engineering designs are evaluated continually while

correlating characteristics of alternative solutions. Constraints establishing the

selection criteria are assessed. Risk assessments are developed. This process

continually iterates until an acceptable solution is found.

Table 2-1 shows the key activities implementing the System Engineering Process.

This section describes the elements of the methodology as they fit into the system

engineering process. It addresses definition of requirements, requirements

prototyping and simulation, requirements performance analysis, design requirements

definition and the use of the open software environment standard in the process.

2-4

TABLE 2-1.- STEPS IN THE SYSTEM ENGINEERING PROCESS

1. Determine user needs, measures of effectiveness analysis, and

requirements identification.

2. Identify system options.

3. Perform functional analysis of user needs and requirements.

4. Identify the system elements within each system option.

5. Allocate functional requirements to the elements within the system options.

6. Assess each system options' satisfaction of quantitative user performance

requirements as well as a sensitivityanalysis to identify "point solutions".

7. Conduct trade studies within each system option to determine the optimum

allocation of performance requirements to the system elements.

8. Conduct trade studies across the system options to determine the system
option that best satisfies the performance requirements, sensitivity to

constraints, producibility, logistics support, manpower considerations, etc.

and compare risk assessment of each system option.

9. Identify the preferred system option and document with Type A

specifications and operational description papers.

10. Finalize the allocation of performance requirements to the elements within

the preferred system option (Type B specifications.)

11. Define interfaces between all system internal elements and between system

and outside world (i.e., the surrounding operational and support
environments.).

12. Enable start of detailed design of system elements and interfaces.

13. Begin technical performance monitoringand assess system impacts of any

parameters of system elements that are projected to fall outside specified

ranges.

14. Monitor test and evaluation of the system elements against their

specifications.

15. Integrate the complete system and assure all interfaces are working properly.

16. Test and evaluate system performance and sensitivity to constraints against

the established user needs (Type A specification).

17. Finalize the definition and documentation of the preferred system option

(Type C specification).

18. Assure that all support equipment, documentation and manuals are

completed and in compliance with requirements.

19. Provide support and monitor results for system transition to user.

20. Subject all change activityto an appropriately scaled down process and

review to assure compatibilitywith basic user requirements.

(Reference Electronic Industries Association Bulletin SYSB-1)

2-5

2.2 REQUIREMENTS DEFINITION

The purpose of this methodology, as previously stated, is to provide an environment

for analyzing and specifying requirements. The parts of this analytical technique are to

use a basic methodology and to tailor its use to fit within the constraints of selected

computer aided systems engineering tools. This results in an approach which

accomplishes the purpose of this document, by resulting in complete and consistent

requirements specifications. This section describes the assumptions and methods for

accomplishing these steps. It also describes some key features of requirements

associated with defining interfaces, standards.

2.2.1 METHODOLOGY ASSUMPTIONS

The methodology was developed by developing an architecture and recording all the

thinking, false starts, good ideas and "hallway" discussions that took place. These

notes then were compiled into this notebook. As part of the development of the

methodology, assumptions had to be made to enable continued expansion of the

methology. These assumptions are listed below so any constraints they may have

place on the methodology will be visible.

To develop this methodology, an avionics analysis was conducted. Although

avionics does include the sensors and effector hardware for controlling the space

vehicle, in this analysis a simplification will be used which assumes that the

avionics we are examining excludes the sensor and effector hardware, in order to

present a somewhat smaller problem for development and illustration purposes.

Since the sensor and effector hardware development actually must take place in

close cooperation with the controlling processing applications subsystem, from the

viewpoint of overall high level control over avionics, this assumption merely

isolates these hardware items from the central controller, which is desirable as an

implementation of the principle of information hiding.

• Requirements common to multiple subsystems, processes or components should

be stated only once.

Requirements for generic entities are based in part on analysis of the requirements

for functions, processes and data of an actual program. These requirements are

then "converted" into generic requirements which are more appropriate to the

architecture being defined. If the original program requirements are clear and do

2-6

CHANGE 1 - JANUARY 1992

not conflict with the requirements of the rest of the architecture, then they are

adopted as much as possible without change. Entity requirements are only

changed if and when their actual non-generic nature becomes clear.

A decentralized functional requirements model can be implemented in either a

distributed, centralized or hybrid processing approach. A centralized functional

requirements model can only be implemented in a centralized processing

approach. The centralized model is a special case of a decentralized model (with

the number of distribution nodes equal to 1). Thus, a decentralized model is used

for generality.

2.2.2 BASIC METHODOLOGY

The basic methodology recommended is to perform an analysis of the static elements

of the target system. This analysis should not be concemed with the tenets of any

specific method such as Yourdan Data Flow Analysis, Ward-Mellor Structured

Analysis or Object Oriented Analysis. The methodology presented below is a hybrid

approach, drawing on elements of each of many formal methods. This methodology

has been developed by documenting the practices of an actual analysis and

expanding it where necessary to ensure effective definition of all the needed

requirements for a space generic avionics system. This basic methodology is

presented assuming an analysis of requirements is being conducted from initial

concept definition with no available space generic avionics architecture. Development

of requirements for an avionics system which can adopt an existing or this generic

architecture would be more effective if based on tailoring the existing requirements of

the generic architecture.

The basic approach is to perform an external environment and interface analysis, then

a requirements static analysis, followed by determination of the operating concept for a

simulation of the system, then a dynamic analysis of requirements performance, and

finally by checking fidelity against the real environment, as shown in figure 2-2. This

emphasizes utilization of a top-down, a bottom-up and another top-down analysis

technique with iteration between the results of both techniques.

The first step in this methodology should be to define the environment within which the

target system must operate, both externally in space and internally with other systems.

2-7

CHANGE f - JANUARY f992

From this, establish the external interfaces which connect to entities outside the system

being developed. This will facilitate definition of the boundaries of the target system

which in turn will improve definition of the scope and content of the target system. This

establishes the external purposes (requirements) which the system must meet. It also

provides the starting point for the following steps.

The second step is to perform a static analysis of the requirements. This involves

gathering together all functions, processes, services, inputs, outputs, data attributes

and quantity performance data identified by users as needed, related to or otherwise

associated with the target system without attempting to strongly or firmly categorize it.

A search through documentation on similar programs, or programs in other operating

mediums is needed to identify related capabilities which might suggest areas of

requirements needed on this program or developmental system. For instance, in

defining space operations control requirements investigate the operations control

requirements associated with U.S. Air Force Control and Reporting Centers (CRCs) for

possible requirements relevant to space. At this stage, do not attempt to filter or limit

the areas of search, if any area is suggested for consideration, accept it without

qualification and do not address whether it is relevant. This activity is similar to

brainstroming in trying to come up with approaches, requirements areas and other

objects which might trigger a thought in one of the requirements analysts.

Analyze this material to identify the categories into which the material falls. Establish

higher level categories of understanding for the requirements using the lists from the

last stage of the data gathering as checklists to see if all requirements categories have

been established. Partition between such categories based on explicit interface

criteria (e.g., all processes must operate as independently as possible or no single

points of failure are permitted). Continue to boil these categories up into higher level

entities until only one entity is left which represents the target system. This system

entity then can be analyzed with respect to the results previously found in analyzing

the target system environment and extemal interfaces.

Then it is necessary to re-analyze the current multi-level structure to determine if a

better structural scheme can be established. If so, the elements of the structure need

to be reorganized. If no better scheme can be identified at this time, this re-analysis

may suggest that some of the elements are not located in the most effective place or

that some of the internal interface could be better defined.

2-8

CHANGE 1 - JANUARY 1992

Having performed (so far) a middle-to-top analysis, a top-down analysis should be

performed to explode entities, processes, data attributes or entities at each stage of the

analysis into better defined entities, processes, data attributes or entities. This

downward explosion analysis should focus, at each level, on how the system at that

level would operate and develop associated diagrams describing system, subsystem

or sub-...-subsystem level operation. This explosion process develops ever more

detailed sub-processes. It should determine at each explosion level if the breakdown

is complete for the entities being exploded, regardless of where the original process

requirements derived from. This explosion structure forms the basis for cross checking

the analyst's logic, and for later dynamic analysis.

The third step is then to develop an operating concept for the simulation of the

requirements, which must be based on the operating concept for the actual system.

Users should be closely involved to insure that the operating concept is both effective

and supports investigation of alternative operating concepts if they have not been

rigorously defined.

Then a dynamic analysis (i.e., simulation) of the requirements must be performed to

determine the object values of performance requirements, and to test out potential

requirements interactions. Finally, the dynamic and static requirements must be

verified to represent the real world environment with sufficient fidelity to convey

effective system development requirements to the system designers.

This basic methodology is referred to as a Hybrid, Object Oriented, Structured Analysis

(HOOSA), as shown in figure 2-2.

2-9

0,1 t/]

m

n

m

m m

x 0
UJ o

m

im

4-_ C

C 0

r_

CHANGE 1 - JANUARY 1_

_. _.< o,-,

- 0 0

2-10

o
0

0
c"

:E
r,_

°_

co)

r"-
,<

I,,.,,

r._

¢-
d_

om

0

d_

0

-__-
Z,,,.

..L-

I'--
!

&

IJ-

2.2.3 USING TOOLS FOR SYSTEMS ENGINEERING

The performance of the Hybrid, Object Oriented, Structured Analysis requires use of

advanced automated tools because the extensive interfaces across one level, the

multiple levels of breakdowns, and the need for consistency across multiple levels of

processing and interface definition can only be effectively maintained by automated

tools which operate in a graphics mode and offer automated level balancing and

consistency checking. Only automated tools can maintain the needed links between

graphics and a data base, and offer an integrated data repository for all elements of

the analysis. Such tools, referred to as Computer Aided Systems Engineering (CASE)

tools, offer a very powerful capability to the systems engineer. This section identifies

the key practices and issues for CASE tool-based analysis, describes the role of static

hybrid analysis approach and the approach that should be used for documenting the

analysis and resulting specifications.

The use of CASE tools offers an entire range of options not previously available (using

manual techniques) to an analyst. The analysis must address static techniques,

dynamic techniques and documentation to show the results. Static techniques capture

the basic information on the problem or system environment using multiple

approaches. Dynamic techniques extend the static model by capturing timing and

movement information to test the models effectiveness in operation. Documentation is

always needed to be able to present the results or to provide specifications to

designers for construction of the resulting system. Figure 2-3 presents an overview of

the scope of capabilities included in CASE tools used for this methodology

development. Examples of each type of capability are shown and described below.

2-11

Q)
LL

W

<

0
0

C_
c
W

E
4_

7O
0

O.

I

&

.__
LL

2-12

The key to the value in CASE tools lies in large measure in their integrated data

repositories which capture all data in the system in one integrated location, with

access from anywhere in the analysis process. The use of CASE tools enables the

building of data (D) and control (C) flow diagrams which describe the processing in the

system. Control state diagrams can be used to describe the flow of control in the

system to capture the method of operation. Tables of requirements can be captured in

the data repository and directly manipulated in the data repository or from the graphic

representation of the system. Interface definitions can be more easily created by

attaching interface requirements to the graphical representation of the interfaces and

using the data repository to cross check them. The building of graphically oriented

diagrams can continue by structured techniques to lower and lower levels, until the

"bottom" has been reached with the definition of "primitive" processes and data. At the

bottom of a structured analysis, the tool enables the definition of primitive process

specifications, which can use program design language (PDL) for software entities or

Very High Speed Integrated Circuits (VHSIC) Hardware Description Language

(VHDL) for hardware entities. From the data repository, results can be captured for

use in dynamic modeling of the system, for performing system analyses and design,

and for producing reports, specifications and other documentation. These techniques

are described in more detail below.

Tools treat inputs to a process and outputs from a process independently, linked only

by name similarity. Thus the user of data and the generator of data are independent

unless the analyst wants to force dependency by using the same name for the data

being flowed. See Appendix E for naming conventions.

2.2.3.1 Multi-tool U_e

Perhaps some day there will be a perfect tool which enables requirements analysis

and design to be performed in a single environment, but that day is far off. Current

environments and tools for requirements development are far from being sufficient or

acceptable as integrated environments and tools. A developer should not

mandate or rely on use of a single tool or single methodology. The current state of the

art in methodology and in tool implementations of methodology are still evolving

rapidly. It is recommended that tools be chosen which are mature and robust over

tools which are the latest on the market, but have not proven themselves in use to be

reliable and relatively bug-free. Data reliability in architecting and designing a system

2-13

is an absolute essential. It would be better to pick any one of many tools in several

categories which are acceptable and then to press on with the target system

requirements development. While the target system developers are working in their

areas of product system expertise, tool developers could be looking to insure that

environment developers are not going astray by focusing on bigger and better tools

while basic tool needs are forgotten. For instance, in the current state of the tool art,

the biggest needs are for open integrated data repositories, and effective interfaces

between different tools to enable analysis and design development to move from one

tool to another without loss of analysis or design data.

2.2.3.2 Types and Quantities of Tools Nee_le_l

The tools which are currently needed include:

Computer Aided Systems Engineering (CASE) static analysis tools which support

an integrated data repository which includes interfaces that are not treated as so

proprietary that the vendor will not enable the developer to adapt the repository

structure to the developer's individual needs. Tools such as Excelerator by

Intersolv and Teamwork by CADRE Technologies allow the developer to structure

the repository and to write their own software to translate data for other tools.

Quantitative performance analysis tools are needed to analyze quantitative

performance requirements such as input/output rates, throughputs, instructions per

second and operations per second. Tradeoffs between numeric requirements in

different parts of the requirements model must be supported. Only spreadsheet

tools have been identified to date which partially meet this need. No dynamic

analysis, partitioning and allocation tools appear to exist yet.

Timing analysis tools are needed to allow a user to analyze the mission and

mission dependent timing factors, to allocate time requirements down from mission

dependencies to system elements, to partition and allocate time requirements into

ever finer (smaller) quantitative time requirements for lower level subsystem

elements, to tradeoff time requirements between different subsystem elements, and

to investigate the effects of system timing changes on the mission. Currently, only

spreadsheets offer partial capability in this area.

2-14

Dynamic CASE tools are needed to determine that the interfaces between parts of

the model have no unexpected requirements conflicts when actually executed, that

no timing difficulties will appear in the sequencing of required activities, and that

process execution can be tested before commitment to design.

Automated tools must check consistency across all diagrams and interfaces at each

level, and between parent and childs within any one explosion path. The use of

multiple tools or multiple instantiations of one tool (if one tool is found which does in

fact perform all analyses needed for requirements analysis and design) must be

applied judiciously, without apriori blinders on tools needed.

The minimum number of tools required include:

One static analysis tool is needed for each individual engineer/analyst's work area

to develop ideas and flesh them out. This systems engineering tool needs to be

used to prove out ideas for completeness and for consistent logic, based on a

complete system model (if it exists). Ideas must be able to be tried out with minimal

risk to the overall system by isolating this model in an individual's workstation

where no easy interaction with a networked system risks propagating premature

changes prior to management approval.

At least one tool is needed for static development of a group revision of the team

approach. This is the main tool for formal specification (if needed) of a complete

and consistent model of the system as the developer plans to specify it to the

builder (contractor). Configuration control capabilities in this tool are critical to

preclude likely loss of control over the design in a team approach.

At least one set of tools is needed for quantitative performance analysis of numeric

performance requirements and alternatives to be tested for tradeoffs.

Spreadsheets must suffice as a minimum until tool technology catches up to this

need.

At least one tool is needed for dynamic development of executable models of

interacting processes using simulated data. Dynamic models prove out the

completeness, timing, data flow path usage, process linking logic, consistency of

data, and coherency of the concept in simulated use. Executable models provide a

2-15

more rigorous form to developing systems. This tool is separate from the

quantitative performance analysis tools discussed above.

2.2.3.3 .Tool Output and the Data Re oository

The output of CASE tool analysis should be documentation built automatically around

the data repository serving the tool. Reviews should address the tools' view of the

system.

The documentation should be produced by the tool in its basic format and should be

acceptable for review as long as the data needed is contained in that hardcopy.

Hardcopy requirements need to be defined to address the key data to be reported, not

the structure of the data report. Specification requirements need to be considered to

determine whether the hardcopy output in tool format, system dynamic models or the

data repository can be accepted as the contractually binding specification to be

provided to system builders.

The data reoository should be capable of storing all the data generated by the system

engineering process described in table 2-1 and the detailed tables that follow table

2-1. The data repository must be capable of modification to support the specific

structure of data needed in the project being analyzed. The data repository should be

capable of conversion of its data base to the data base structure of other data

repositories to facilitate transfer of the data underlying an analysis from one tool to

another tool.

2.2.4 CONVENTIONAL ANALYSIS APPROACHES

The method used in this document merges three conventional analysis techniques:

structured analysis, object oriented, and interactive development to produce the

recommended methodology: the Hybrid, Object Oriented, Structured Analysis

(HOOSA) methodology. This recommended methodology is thus a hybrid of each of

these three and has been tested on the large space system definition. Each of these

standard approaches is described below, along with the features of each pulled into

the recommended hybrid approach.

2-16

2.2.4.1 Sti'uctured Analysis A.oDroaches

Sl_ructured Analysis techniques are based on modeling the data flows in a system.

The focus is on defining the data and control flows throughout a system, the

transformations on the data and control flows, the data stores used in moving data and

control, primitive process specifications and data dictionaries of the data and controls.

By addressing the movement and transformation of data and control, there is a close

correspondence between the real world and the requirements model constructed to

represent the users' needs. Numerous tools are available to implement these

techniques, the most widespread of which are the Ward-Mellor, DeMarco and Gane-

Sarson methodologies. However, a common problem in structured analysis

techniques is knowing when to stop since data can always be more finely subdivided.

Another difficulty is selection of bubbles, representing events in the real world which

use or provide data or control, and placement of stores as intermediaries between

bubbles. These techniques commonly focus on modeling the physical flow of data

and control, which is once removed from the actual requirements as noted in Section

2.2.5.2 in the discussion of logical versus physical requirements. Figure 2-4

represents an example of the partitioning process often used in structured analysis.

The structured analysis techniaues are exemplified by figure 2-4. The highest level

context diagram shows the system as a monolithic bubble with rectangular external

entities outside the system. These external entities in the external environment drive

the need for interfaces from the system to outside systems, and establish the basic

purpose for which the system is being created. The system can then be exploded or

broken out into a system diagram which shows the major subsystems (here shown as

A1, A2, A3 and A4). The system diagram's external interfaces are breakouts of the

external interfaces from the higher level context diagram. The system diagram's

internal interfaces are new descriptions of data attributes needed as input to a

subsystem or produced as output for some other subsystem. Each subsystem can

then be further broken out (indefinitely) into more detailed lower level subsystems or

processes. Thus, for example, subsystem A3 is broken into processes A31, A32, A33,

A34 and A35. The inputs to A3 are broken into the inputs to A31 and A34 in the

diagram. The output from A3 has just one process output from A35.

2-17

INTO
SYS"IEMELEMENTS

BImAK..ouIr
INTO PitOCaSl

Figure 2-4.- Structured Analysis Example.

2-18

Closely related to structured analysis is another technique called functional

decomposition. This technique also uses the structured breakdown approach shown

in figure 2-4, but addresses functions, subfunctions and functional interfaces. The

basic approach of functional decomposition is to select functions based on the

processes which need to be performed for a system. This technique focuses an

analyst's attention on the defining of functions and processes which need to be

performed by the entities in the real environment. It can be difficult determining

whether the requirements accurately reflect the needs of the real environment entities.

Testing can be difficult to verify that the users' needs have been met. Functional

decompositions are difficult because the functions are highly volatile (subject to

requirements changes), and can be relatively subjective in how they are constructed

because there is not a clear and direct linkage to the real environment.

Another related approach is a technique called information modeling. This technique

models the entities in the real world and the information attributes, relationships and

classification types associated with them. As such, it more closely follows the needs of

the users and more faithfully represents their requirements. This technique is also

similar to the object oriented approach discussed next.

2.2.4.2 Object Oriented Ao0roach

A new methodology known as ob)ect oriented analysis (OOA) is currently evolving and

shows promise. It offers the use of "objects" as abstractions of real world entities

involved in solving problems; it can improve the definition and capture of requirements

for solving problems within a real environment. Its definition is still changing, but

includes features from information modeling approaches by representing real world

objects and their information needs. It is also includes features from the programming

language design and development world by use of classes of objects with inheritance

among class members.

Object oriented modeling is not yet sufficiently mature and stable as a methodology to

be relied on for analyzing major systems or sets of systems such as found in larger

space systems, but does offer some features which can improve our methodology.

These features are shown in the figure 2-5. OOA suggests the value of addressing

object services and attributes as an intrinsic whole instead of functions or data

individuallyand separately. The problem with analyzing functions or data per se is

2-19

Object A1 Classificatio_

Subsystem
Object A1

A1 Attributes:

CodeName
IdNumber

Status
Capacity

Rate

Object A1 Assembly:

;ubsystem Object
A1 Services:

Track

SearchRecordFailure

Figure 2-5.- Object Oriented Approach Features.

2 -20

that they tend to change as the environment understanding Changes or needs change.

However the objects involved in the problem space do not change (as much). By

abstracting the functions and process into services, and attaching the data with an

object, a more stable definition can result. But the process is only as good as the

analysis.

Since the OOA approach is not yet well defined, the Hybrid, Object Oriented,

Structured Analysis approach described in section 2.2.5 was selected to avoid

accusations that the recommended approach does not precisely follow some

individual variation of the OOA approach; the interest here is to define requirements in

a practice that works rather than follow some pro-forma methodology which may not

be clearly understandable.

2.2.4.3 Interactive Development

Another technique needed in the hybrid approach was interactive development. This

is an informal technique to use computer tools to develop a model of the system. First

a static model is built to capture all the requirements, to demonstrate the requirements

and their interpretations as understood by the analysts, and to obtain operational user

validation that the requirements appear to be correct and acceptable at the point in

time they are being demonstrated. No final validation can be expected in a complex

system because the complexity interferes with the human ability to determine whether

the requirements model actually captures the intended requirements of the operational

user, as well as the technology capability which will implement the requirements. The

second stage of interactive development is to implement a dynamic model of the

system which determines whether the requirements interactive in unanticipated ways

or are subtly in conflict.

Dynamic requirements simulations should not be built before the static model for new

systems because the dynamic execution of a model can introduce its own difficulties

which interfere with the analyst and users ability to "see" if the requirements have been

effectively captured in the model. Separating the users statements of the requirements

(i.e., the static model) from the operating dependent view of the requirements (i.e., the

dynamic model) simplifies verification and validation of the requirements. (Note these

models are addressing requirements not designs, as will be discussed below.)

2-21

2.2.5 HYBRID METHOD FEATURES

The merger of the structured analysis, object oriented approaches, and interactive

development yields a more robust methodology with improved description of

requirements for space systems development. Features facilitating object oriented

improved requirements descriptions, supporting better definition of interfaces, stronger

utility of standards, inheritance of requirements to lower level elements in a top-down

structure, clearer partitioning between applications and services and allocation of

performance requirements, and improved definition of concurrent engineering

requirements must be part of an effective methodology. This section describes some

of the key hybrid approach features needed and how they should be used in the

methodology.

2.2.5.100A Features Needed

The features of OOA used in our methodology include definition of objects by

abstracting the processes and data, and establishing the services which operate on

the data based on inputs to the object. In the Hybrid Object Oriented Structured

Analysis, abstracted processes and data are referred to as entities to distinguish them

from OOA's objects. Data attributes are defined for each object and similarly for each

hybrid approach entity. Services are the processes performed as a result of messages

received by the object. In the hybrid approach, services are more system process

oriented.

OOA suggests the use of assemblies which are component parts of an object broken

down into lower level objects; this is similar to the hybrid approach's structured

breakdown of entities into entities at lower levels or sub-entities. Classification is a

feature of OOA by which each object is identified as a member of a class for

inheritance purposes; multiple class memberships are possible for each object. The

hybrid approach allows only one class membership, namely that higher level entity

which spawns the entity. Inheritance is partially available in the hybrid approach as

noted below.

OOA also offers features such as information hiding (encapsulation) whereby the

external view of an object is represented at each level as a monolith, or single entity,

with only inputs and outputs needed by other entities at the same level. The internal

2-22

workings of each entity are hidden and not accessible from Outside that entity to

protect it from external interference in its operation. Information hiding is achieved in

the Hybrid Object Oriented Structured Analysis by defining external interfaces and

services for each entity which are the only access points for the entity.

Inheritance is a feature of OOA by which common attributes and services of an object

as specified once and then extended to each specific case of the object. In the Hybrid

Object Oriented Structured Analysis, inheritance is achieved by defining that the

requirements for an entity automatically apply to all lower level entities. If a

requirement does not automatically extend to all lower level entities, then it would not

show up at the higher level, but would be attached to the lower level entities to which it

applied (if it applied also to all lower level entities in turn). This suggests an iterative

process by which an entity is created and requirements attached to it. As lower level

entities are later created, some requirements may not apply universally and thus

would be moved down to lower level entities.

2.2.5.2 Interface Reauirements Definition

The requirements defined for the system must include quantitative and performance

requirements because these are the points which determine whether the as-built

product will actually meet the users' needs; building the product so that it works is

often easier than making it work fast enough or often enough, etc. Verifying that

interfaces function acceptably can be difficult. Identifying and specifying hardware

interfaces can be easier than defining the architectural and software interfaces since

hardware can be touched and viewed. Architectural structures (above the

hardware/software partitioning level) and software interfaces can be hard to define

because they are hard to visualize. Figure 2-6 represents the difficulties involved in

defining architectural and software interfaces.

2-23

2-24

Within an individual subsystem, as represented by the stacks in Figure 2-6, interface

definition is a conventional process known to specialists in these areas of expertise.

As systems get bigger and more integrated, however, more interfaces will exist

between different subsystems; such interfaces may derive from use of common

hardware elements, from sharing of resources including services, or from reuse of

standardized software packages. Such interfaces pose different problems in

requirements definition because they are a new problem. Definition of the interfaces

between such different applications subsystems as Guidance, Navigation and Control

(GNC) and Communications and Tracking (C&T), as shown by the stacks on the left in

this figure, require a more explicit use of an effective methodology.

Intersystem applications interface requirements should address logical requirements

of the interface. That is, the end user of the data should be identified with the reason

the data is needed, and the source originating the data should be identified. Detailed

performance characteristics for the interface to meet the end user application's

requirements should be identified. Routing of the data should not be a concern to the

source and user because the routing (i.e., physical requirements) should be

transparent to these entities.

Similarly, within the services area, services interfaces should also define the logical

service interface requirements and not the routing unless the routing is relevant to the

logical flow of data. Physical interface requirements are normally a design issue

unless the physical implementation has implications for the logical use or need for

data, only then should the physical implementation be specified as a requirement. For

instance, a service such as a Reports Generator getting data from a Data Base

Manager might not need to know the inter-network addressing of the Data Base

Manager, but the Network Manager providing the data would need to know the routing

requirements of the hardware services.

2.2.5.3 Standards Reauirement$

Figure 2-6 points to the interaction between applications and service standards.

Standards must be applied to the definition of aspects of the developing system such

as interfaces, buses, software development, etc. Typically, these standards will apply

to the services, especially as they are planned to be physically implemented. Other

standards may apply to the applications or may be developed specifically to guide the

2 -25

applications development. If so, these sets of standards must not be in conflict, or

design problems will occur. For instance, if an application standard called for

distribution of timing synchronization through software for maximum flexibility, and a

service standard called for updating timing synchronization marks at 5 nanosecond

intervals, this would present a standards conflict to the designers since software

cannot achieve 5 nanosecond speeds while hardware can.

The standards to be applied must also be tailored to the purpose of each applications

subsystem to which they apply by the use of standards' profiles which depict how the

standards will be specifically applied to each targeted subsystem application.

Standards must be tailored in profiles to specify how the required interfaces should

operate. Application of the standards must identify specific sections and subsections

of the standards and attach those tailorings to the data base as a requirement for each

of the application or service entities to which the standard profile is being applied.

This will be clarified in the next few paragraphs.

2.2.5.4 Reauirements Inheritance

Hierarchical and cascaded requirements are needed in requirements listings to

achieve inheritance as shown in figure 2-7. The bubbles on the left of the figure

represent two levels of entities on a structured breakdown chart, where entities A31 to

A35 are breakouts of entity A3. Requirements would be stated on each entity. To

make this work in this analysis, the following guidelines were implemented:

Requirements on any entity i on a level j must apply to each and equally to every

entity il to ik on level j+l for every i - 1 to n and j = 1 to m. Thus in figure 2-7,

requirements stated on entity A3 are defined to apply to every entity A31 to A35.

Requirements not applicable to all of A31 to A35 must be applied to each of them

individually. For instance, if only A31 and A32 have service requirements to

generate reports, and they generate the same report for different data cases, then

the requirement to call the Reports Generator service and access the same report

table and generate the same type of report data from the same data base fields (but

containing different data field entries), would be repeated in both A31 and A32.

2-26

II,

o

0
o
c

.;-

r-
r'-

C

E
fll

°_
2_

rr
I

rz
&

.__

2-27

Where requirements A31 to A35 are additive and sum into A3, then on A3 they are

applied as a Note rather than as a Requirement. The requirement is the lower level

statement which is testable. For instance, if timing requirements were applied to

A31 of 100 seconds, to A32 of 200 seconds, to A33 of 300 seconds, to A34 of 400

seconds, and to A35 of 500 seconds, the sum (1500 seconds) would be applied to

A3 as a Note for informational purposes but not as a requirement because the

1500 second figure is not testable; only the individual figures of 100, 200, etc

seconds are testable.

Requirements cannot cross the boundary as shown by the "not a requirement"

bubble in the figure. Requirements which apply to more than one but less than all

entities A31 to A35 must be stated and repeated for each entity to which the

requirements do apply.

Requirements cannot overlap. The same requirement can be stated more than

once for different entities as noted above, but the different entities cannot use

pointers or references to requirements stated elsewhere. For instance, A31 and

A32 must be disjoint requirements statements (no overlap); although the basic

requirements statement may be the same, each may be more tailored to be specific

to the entity containing it. A requirement in A31 may be implicitly derived from A3

by inheritance with additional explicitly stated modifications, or may be explicitly

stated new requirements. Requirements listings should include explicit statements,

as Notes, of the analysts understanding and interpretation of what the requirement

means for future reference.

2.2.5.5 Performance Reauirements

Between the applications subsystems such as GNC and the service subsystems such

as Operating Systems (OS), interfaces are needed to identify the applications

interactions with services, the performance requirements to be levied on the services

by the applications need (if any), and any unique operating requirements on the

service. This set of requirements can be linked together as illustrated in figure 2-8.

While the applications subsystem requirements are defined in the structure on the left

in this figure, the detailed requirements are included in the data repository (i.e., the

rounded rectangles under each bubble) accessible from each entity (i.e., bubble) and

underlying the definition of each entity. For instance, state/mode control for vehicle

2-28

2-29

I1)
o

o_

0

¢/)

E

.D

(D
rr

.o_

o

0

E

x
W

!

&

°_

U_

control might establish requirements on the Data Base Manager (DB Reqt 2) and on

the Network Manager (NOS Reqt 1). Each of these is a call on a standard service

provided by the Operating System Services. The analyst would compare all calls for

the DB Manager to determine the nominal as well as the most stringent individual

requirements in order to specify the overall requirements for the DB Manager.

Just as the performance requirements are placed in the data repository so they can be

attached to the services which must meet them, so also can the standards profiles be

placed in the data repository. The placement of standards profiles (i.e., tailorings of

the standards to the entity) in the data repository indicates that the standard as tailored

in the profile is a requirement just as important as the performance requirements in the

data repository. The data repository must then maintain traceability from the structural

as well as the performance and standards requirements back to the generating source

of the requirement to support trading off requirements and other factors such as costs.

Cost considerations can only be realistically handled if the generating source and all

links to the resulting requirements are explicitly known.

2.2.5.6 Concurrent Engineering Reatjirements

Concurrent engineering is concerned with the development and specification of

requirements. The requirements for the major functions (such as GNC control,

communications control, etc.) must be coordinated with the requirements for

supporting and operating these functions. The support and operations requirements

are usually labeled the Quality or "llity" requirements. Table 2-2 summarizes the types

of data that may be needed for identifying and specifying requirements. Concurrent

engineering requirements are defined here as all the inter-related requirements.

Table 2-2. Requirements Summary for Documentation

o System Entities

o Architecture

o Environment

o Qualities

o Timelines and Timing Requirements

o Performance Requirements

o Attributes (Data)

2-30

The development of requirements for system entities, the architecture, environment

and data attributes will be discussed extensively in this methodology. In summary, the

system entities requirements must result in the definition of the specifics shown in
table 2-3.

Table 2-3.- System Entity Requirements Summary

o Purpose
o Functions/Processes/Services Contained

o Special Class Membership (if applicable)

The architecture requirements must result in the definition of the elements shown in
table 2-4.

Table 2-4. System Architecture Requirements Summary

O

O

O

General

Platform Unique Extensions

- Orbiter (Earth, Moon, Mars)

- Transfer Vehicle (Earth Orbit-to-Lunar Orbit, Earth Orbit-to-

Mars Orbit, etc.)

Excursion Vehicle (Lunar Orbit-to-Lunar Surface, Mars Orbit-

to-Mars Surface)

Rover Vehicle (Lunar Site-to-Near Region, Lunar Site-to-Far

Region, Mars Base-to-Construction Site, etc.)

Mission Unique Requirements

Surface-to-Orbit (SO)

Docking/Berthing (DB)

Orbit Station Keeping (OSK - Low Planetary Orbit up

Geosynchronous Orbit)

Orbit Transfer-to-New Orbit (OO)

Orbit-to-Surface (OS)

Base Internal Operations (Base)

Base Excursion Operations (BE)

2-31

The environmental requirements must result in definition of the elements shown in

table 2-5.

Table 2-5. System Environment Requirements Summary

o External

o Internal

The system data attribute requirements must result in the definition of the elements

shown in table 2-6.

Table 2-6. System Data Requirements Summary

o Purpose

o Type (Block Data, Message, etc.)

o Trigger/Event Driven

o Synchronous/Asynchronous

o Continuous/Intermittent

o Criticality

o Filtering

o Storage

o Flows, Records and Fields

o Hierarchy and Structure

o Generic or Specific

o Platform Unique Extensions

o Mission Unique Needs

o Foreign Source

o Data Security

Requirements must be documented in specifications. The specification documents

must cover the types of data addressed in Table 2-2 to specify systems and

subsystems; this data should be established during requirements analysis and should

be available in the data repository for the system.

2-32

In the remainder of this section (2.2.5.6), the concern is with the quality, time,

performance and cost requirements.

2.2.5.6.1 Quality Requirements Definition.

A part of definition of the performance and standards requirements is specifying the

requirements for the Qualities or "llities", that is, for Connectivity, Flexibility, Reliability,

Maintainability, Recoverability, Simplicity, Commonality, Expandibility and Maturity as

shown in Table 2-7. Related are tailoring and unique extension requirements needed

to adapt the system being specified to the platform in which it operates. The quality

requirements can affect every aspect of the developing system, and should in fact be

designed into the system from the start rather than afterwards as an "add-on", which

has been shown to not be effective in many programs. For instance, requirements for

reliability must not only specify the actual requirements numbers, but also must

consider architectural issues in reliability such as, are additional qualities needed in

the requirements data base such as triple voting concurrent processing for life critical

processes, or are special entities representing unique functionality or capability to

achieve higher reliability needed such as a voting assessor. To be designed early,

quality requirements must be specified as part of the requirements analysis.

2-33

Table 2-7. System Quality Requirements Summary

o Connectivity (Closely Coupled, Loosely Coupled, etc.)

o Flexibility

o Reliability

o Maintainability

o Recoverability

o Simplicity

o Commonality

- Definition

- Classes (if any) of Common Elements

- Class Requirements

o Expandibility

- Spare Capability

- Growth Capability

- Computation of Spare vs. Growth (Source

Requirement x Spare x Growth, [Source

Requirement x Spare] + [Source Requirement x

Growth], etc.)

o Maturity

- Minimum Age of Capability prior to use

- Experience with Capability

- State-of-the-Art Importance relative to Maturity

o Security

- Communications

- Operations

- Development

2-34

2.2.5.6.2 Timelines and Timing Requirements Definition

Timelines must be developed in a flow-down from the timelines inherent in the mission

activities which must be performed. Timelines establish the major scale of time which

must be refined and allocated to specific entities and their services to perform. The

timelines determine the timing and time requirements for specific events. The time

requirements of individual applications and services shouldbe established by trading

off the timings that can be accomplished with time requirements that cannot be met,

while insuring that the time requirements related to the mission activities continue to

be met. Some of the factors of importance in timeline analysis are shown in table 2-8.

Table 2-8. System Timelines and Timing Requirements Summary

o Operations/Mission Timelines

o Flowdown Procedures from Timelines to Timing

o Applications Processing Timing

o Operating System and Services Timing

2-35

2.2.5.6.3 Performance Requirements Definition

Performance requirements must be defined in a flow-down manner. The

requirements need to be capable of being traded off directly against one another and

indirectly against elements in the other requirements areas. Table 2-9 summarizes the

requirements that need to be developed.

Table 2-9. System Performance Requirements Summary

o

o

Qualitative

Quantitative

- Power

- Weight

- Volume

- Instructions or Operations per Second

- Memory

- Mean Time Between Failure (MTBF)

- Mean Time to Repair (MTTR)

Heat Dissipation

- Electromagnetic

Interference/Compatibility (EMI/EMC)

Input and Output Rates

Throughput

etc.

The key parameter driving requirements performance for the entire processing system

is throughput. Careful definition of throughput performance for the system, and

allocation of throughput performance down to each processing element in the system

is essential.

2-36

2.2.5.6.4 Cost Requirements Definition

Cost considerations are a primary driver of the design of the system, since the

affordable costs limit the design of the system. Thus, they constitute legitimate

requirements for the system. Cost goals are needed up front to focus development

efforts and to establish when enough (affordable) development has been

accomplished. Trades of total system performance on an end-to-end basis need to be

performed using alternative architectural implementations (i.e., instantiations of this

generic architecture), and a methodology on architectural tradeoffs is needed. The

architectural factors to be considered will affect allocation of processing, memory and

other resources, and must be made on an objective, justifiable basis. Table 2-10

summarizes the overall costs of interest that should be flowed down to lower level

elements in the requirements analysis process.

Table 2-10. System Cost Requirements Summary

o Total Life Cycle Cost

o Developmental Cost Elements

o Unit Cost Elements

o Operation and Support Cost Elements

Examples of the results of this architectural tradeoff process might result in an

allocation requirement (for example) that looks like the following:

Sensor and control processing to meet real time demands will

be performed on the vehicle, with enough assets allocated to

perform the mission with sufficient redundancy. Ground based

processing will provide the necessary planning, scheduling,

interpretation and analysis of the data which demands heavy

or expensive processing resources. The intermediate stages

(off-vehicle or off-ground) will provide minimum computation

redundancy and maximum required communications support.

2-37

2.2.5.7 Hybrid M_thqdqlqgy Reauirements Summary_

The Hybrid, Object Oriented, Structured Analysis methodology recommended and

described herein is derived from an amalgamation of standard structured analysis

techniques, merged with some of the advanced techniques developed in the object

oriented and interactive development approaches. From OOA, our methodology gets

the concepts of abstraction of entities with explicitly defined inputs and outputs, parts

breakdown of lower level entities, informations hiding of internal processing and data

usage, and some requirements inheritance. The interface requirements are based on

the logical interfaces which address the ultimate system user of data and the provider

of the needed data. Standards that need to be applied are identified by their profiles

in the data repository underlying each data flow and entity. Performance requirements

are determined for each user application and allocated to the lower level entities and

the respective services. The development goal should be to establish objectively

supportable minimum performance objectives (requirements) to be achieved with

acceptable quality and minimal costs.

Development of requirements must address the concurrent use of all requirements,

not just the primary performance requirements. Operation, support, quality and site

adaptation requirements are equally important because they enable the system to

actually function. Cost requirements are important because they enable the system to

be obtained. It is important to understand the distinctions between the requirements

and the designs, as will be discussed in the next section.

2.2.6 DIFFERENCES BETWEEN REQUIREMENTS AND DESIGN APPROACHES

There is a difference between the requirements and design views of a system. The

requirements analysis process starts off from some user needs which can be

(presumably) met by a new or modified system. These user system needs then get

turned into requirements for the developer community. They may be turned into

requirements by the user issuing a requirements specification in some form or by

telling the contractor to prepare specifications which the developer and the users will

validate. Validated requirements specifications will then be used by the

contractor/developer to design and build the system. The overall process of working

between requirements and design activities is shown in figure 2-9.

2 -38

J _ Architecture
Focus

SYSTEM
NEED

A

I LEVEL i I
DESIGN

LEVEL + 1
REQTS

Figure 2-9.- Relationship of Requirements to Design Activities.

2-39

The process of requirements analysis is usually portrayed as one of determining the

high level requirements and refining them to lower and lower levels of detailed

requirements in subsystems, modules, components, and units. But actually the

process looks more like the flow in this figure. After preliminary system requirements

are developed, some system design is accomplished. Requirements at level 1 result

in a level 1 design, both of which then drive Jower level requirements at level 2. The

requirements at level 2 must not only accommodate the level 1 requirements but also

the design assumptions at level 1. This process (and its assumptions) in turn enable

the next level of detail to be developed initially as requirements, which in turn lead to a

design (or assumptions about a design). The process then repeats for lower and

lower levels. Not shown in the figure, are the iterative loops that take place back and

forth between requirements definition, design assumptions (which are attempts to see

if the requirements at the same level actually are feasible and effective), and lower

level requirements definition.

Although the focus in requirements analysis is on the right side of the figure, you

cannot forget the left side, or the requirements will not work because too much valid

material will be left out of the requirements. While considering design issues,

however, it is important they be as minimal as possible and appropriate to the level of

requirements being addressed. The design assumptions at each higher level drive

some key requirements at lower levels; otherwise known as "design requirements".

2.2.6.1 Requirements vs. Design Determination

Since all requirements are derived based on the need of the human users, only the

top level requirements directly traceable to these needs are actually "pure"

requirements. All other lower leveJ requirements have been derived based on some

explicit or assumed higher level design knowledge, hence they are in fact design

requirements. The key in defining requirements for systems is to not be concerned

with artificial distinctions between "pure" requirements and design requirements, but to

be concerned with establishing what is needed to eventually build the system. This

will necessitate both types of requirements. The important thing is to not build in

design features or assumptions too soon, and which are not appropriate to the level of

requirements definition.

2-40

A key difference between requirements and design derives from the way requirements

are identified. A proof of a requirement is that it answers the question, "What do you

need." A proof of a design feature is that is answers the question, "How can it be

done." After requirements (either "pure" or design) are defined, they can be allocated

to the design at the same level, which provides the testability and traceability because

the design (at the same level) can be tested to determine if the allocated requirements

at that level have been met. Note that the design for a level need NOT be organized,

developed or presented in a form that is parallel to that of the requirements.

Requirements are grouped for the convenience of the requirements analysts and the

designers who must both understand all the requirements for an entity. The

requirements structure should not necessarily constrain the design as long as it meets

the requirements content. The requirements structure aids understanding by all

involved in building the system, it does not necessarily represent the design of the

system. In fact, the design may and often will use different design entities to facilitate

design improvements and features that are not being done to meet requirements.

Partitioning of avionics higher level entities into lower level entities needs to be based

on explicit criteria. If an avionics entity is to be broken into entities A, B, C, etc, these

entities can be selected based on what makes sense for understanding of the

requirements in a requirements analysis, not what will necessarily ease the design.

Requirements must be clear and understandable to the requirements analysts so that

they can present clear requirements to enable the designers to know what is expected

of their design product.

The partitioning between conventional control subsystems (such as GNC or C&T) and

the operations control subsystem (Space Operations Control Subsystem) in the

architecture has been clarified with the definition of criteria for determining whether

requirements are part of one or the other. The primary criteria is the determination

whether a specific process or data requirements serves a closed loop control

functional need or an open loop functional need, with subsystems requiring astronaut

input being treated as a open loop subsystems since the input is not from within the

system. Closed loop (over time) control requirements have been defined to be part of

the control subsystems such as GNC attitude control, while open loop control

requirements (such as for Traffic Management) have been defined to be part of the

operations control subsystem. This makes the allocation (in design) of open loop

functions such as traffic management more effective since the interfaces between the

2-41

open loop functions and the closed loop functions can be better defined by this

approach. This does not imply that traffic management would not or should not be

implemented (for example) in a GNC design. A function such as taking navigation

data off laser gyros would appear to be open loop, but in fact is a closed loop

functional requirement over time, since the gyros have to be resynchronized

periodically to compensate for drift.

2.2.6.2 Lessons Learned

Some specific lessons learned in requirements analysis are that:

Mental confusion between the difference between requirements and design

features (i.e., "what" and "how") very easily leads to confusion over what is needed

in the requirements, which leads to specifying of design features resulting in a

poor design with subsequent and frequent re-work needed.

• Requirements statements should be listed with one requirement to a line with an

individual unique identifier for each requirement.

Q The specific CASE tools used are not nearly as important as the need to use CASE

tools which have an integrated data repository, thus allowing the developer to

establish requirements that include a linked data base without the distraction of

having to develop a methodology for building that data base.

2.3 REQUIREMENTS PROTOTYPING AND SIMULATION

This section identifies the methodology practices for CASE tool-based analysis,

describes the role of static hybrid analysis in prototyping, the changes that occur when

transitioning to a dynamic modeling approach, and the approach that should be used

for documenting the analysis and resulting specifications.

TBD in FY 92.

2.4 REQUIREMENTS PERFORMANCE ANALYSIS

This section identifies the practices for analyzing architecture performance, as a

method of determining the performance of alternative architectures, and the

performance merits of alternative requirements specifications.

2.42

TBD in FY 92.

2.5 DESIGN REQUIREMENTS DEFINITION

This section identifies the practices to be used in defining design requirements, i.e.,

the requirements which are dependent on previously established design assumptions

at a higher system/subsystem level.

TBD in FY 92.

2.6 OPEN SOFTWARE ENVIRONMENT USE

The methodology for requirements analysis is based on use of open and generic

standards and environments. One of the key complementary environments is the

Open Software Environment (OSE) being developed by the Strategic Avionics

Technology Working Group (SATWG). This environment will establish a set of

specifications, standards and procedures common to all missions which must operate

concurrently, with inherent upgradeability. Definition of entities and interfaces based

on the OSE model can facilitate requirements definition for designs which have the

open and generic characteristics needed. Figure 2-10 depicts the OSE model.

There are three types of entities used in the OSE Model: Application Software,

Application Platform and External Environment. Application Software (AS) is the set of

processes, data and associated performance parameters and documentation in

electronic form related to a data processing system. Application Platform (AP) is the

set of services and resources needed to run the applications. Extemal Environment

(EE) is the set of entities outside the boundaries of the entity of interest which need to

exchange information with the entity of interest. The external environment includes

permanent data stores, electronic communications entities and human entities.

2-43

APPLICATION

_1 PROGRAM
]INTERFACE

Processing L(API)

User

::_:_:_:::_:_ .:1::::::::::::

I I I I I I I

Comm

Info

_!ii'_iliii!ii¢iil

EXTERNAL
_./ENVIRONMENT

"_ll INTERFACE

L(EEI)

Figure 2-10.- Open Software Environment Model of Applications and Interfaces.
°

2-44

Applications Software interfaces through the API, Application Platforms interface

through the External Environment Interface (EEl). The API interfaces are: User (the

interface intended to provide access with the user), information interchange (non-

communications language bindings to be provided through the Applications

Platforms), communications (language bindings for services available to exchange

state and information between Applications Platforms and Applications Software), and

processing (language bindings for service communicationsavailable internally and

not used for portability). The four types of interfaces used in the EEl are: User

(physical access between the machine and human), information (language bindings

for service using physical and logical file structure), and communications (language

bindings for service for media definition, connectivity, and protocols for state and data).

The OSE model, shown in figure 2-10, using ASs, APIs, APs, EEls and EEs can

involve multiple subsystems. In our Space Generic Avionics architecture, as

described in section 3.1, each subsystem application (e.g., GN&C Control, C&T

Control and SOCS) is the Application Software. The central architecture consisting of

processing hardware and system services are the Application Platforms. The

subsystem application to system services interface is the API, which is implemented for

communications through the Space Data System Services (SDSS) communications

network services at the Open Systems Interconnect (OSI) layer 7. The Application

Platform (i.e., avionics) to External Environment (i.e., the users, hardware sensors,

effectors and communications devices) interface is the EEl, which is implemented for

communications through the SDSS communications network services at the OSI

layer 1.

The standard hardware architecture can be overlaid with the OSE interfaces, as

shown in figure 2-11. This is another way of looking at the use of the OSE model.

Standard Data Processors (SDP), the Multiplex Data Processors (MDP) and the

Sensor and Effector Embedded Processors (SP and EP) are the host computers for

the Application Platform and its services, as well as the Application Software.

Communications from the SDPs over the core network, local buses and direct

communications links are communications to other standard processing elements,

hence are external interfaces. Communications within each processor (whether the

SDP, MDP, SP or the EPs) is an internal interface (the API).

2 -45

(/)
n-
O
I-
_J
U.I
ii
It.
u.I

2-46

This is used in this methodology to create requirements at the appropriate level.

System requirements are created with each entity for the data attributes needed by

that entity or needed to be provided for some other entity; these data attributes are

logical data flow requirements. They identify the source of the data and the end-user

needing the data, as well as the characteristic attributes required of the data. They are

not concerned with the mechanism for implementing the data requirements. The

implementation related requirements for the interfaces are a physical issue relating to

the mechanisms provided flowing the data from the source application to the end-user

application. The OSE model addresses standards for the physical interface through

the APIs and the EEls. The source of the design requirements for the APIs, APs and

EEls (as previously noted) is the logical data attribute requirements and entity

Applications Software requirements. This is illustrated in figure 2-12

2-47

D_

<

_ m m

<

c:

0

o
LI_

c:: c:

EE

E _-
(_ .L:_

0.__0

0 _'
__1 r

!

_o

&
q)

I!

2-48

3. METHODOLOGY APPLICATION

The approach to performing a requirements analysis and design development is to

consistently apply some basic techniques which both capture the user's requirements,

and help drive out the unstated requirements needed by the user to operate an

effective system. Requirements development must be based on application of the

systems engineering process appropriately tailored to the phase of the target system's

life cycle. Although requirements definition is recognized to be difficult, traceability

between related requirements and subsequent design must be accomplished from the

beginning of conceptual requirements analysis; if not, then it will be extremely difficult

to backfill the requirements traceability later. Yet requirements traceability is the heart

of design quality assurance and the key to proving to the user that the delivered

system does meet the requirements.

The preferred method of assembling requirements analysis techniques and results

into a traceable structure in this hybrid approach is to use automated systems

engineering tools which include an integrated data repository. The requirements must

be organized into a structure which enables both the developers and the users to

understand the breadth and depth of proposed requirements and also the impact of

the requirements on design and subsequent costs. This requirements structure for a

target system is the requirements architecture of the system. This section identifies the

target architecture used in developing the basic methodology, the specific practices

and techniques followed in performing requirements analysis of this architecture,

prototyping and simulation use in proving the effectiveness of the architecture and

implementation of performance analysis in developing this methodology.

3.1 GENERIC ARCHITECTURE DEFINITION

A Space Generic Avionics (SGA) architecture was used as the target for development

to establish the methodology by use in a real analysis development activity. The SGA

architecture is shown Figure 3-1. Although the definition of avionics varies depending

on its source, for this activity to develop a methodology, we used an avionics definition

which assumed that the control subsystems for each of the more traditional

subsystems (such as GNC or C&T) were within the avionics boundary while the

hardware sensors and effectors were outside the avionics boundary. This was to

3-1

"__ -_

c
0

!

LL

:3-2

facilitate boundary definition with its attendant conditions, enable a stronger focus on

architecture development.

Since the NASA Johnson Space Center (JSC) divisions associated with each of these

subsystems knows their subsystems well, it was assumed that a major focus of the

architectural development should be the interstices of the JSC divisions (i.e., the

interfaces between subsystems such as between GNC and C&T). It was also

assumed that closed loop control over hardware subsystems would be less likely to

change over the course of evolution from one mission to the next. The open loop

control over operations activities would be more likely to change from one mission to

the next, so the emphasis was on partitioning and clarifying the boundaries between

closed loop control subsystems and open loop operations subsystems. These

subsystems are both applications.

Another focus was to determine how to define the performance requirements in the

architecture for the services needed to enable these applications subsystems to

function effectively. Thus the darkened lines on the operations control application and

the data system services bubbles and interfaces in the architecture in Figure 3-1 are

depicted as another primary focus of this analysis. This focus provided not only a

methodology, but also some value added avionics structure for operations control and

data systems services. This diagram is not intended to suggest that these are the only

interfaces of concern in a space avionics system, nor that the subsystems revolve

around the operations control subsystem as a central point of control.

3.2 REQUIREMENTS ANALYSIS

The methods used in requirements analysis must provide for definition of the system

concept, its requirements, the design requirements, definition of requirements

prototypes and simulations, and determination and verification of performance

requirements. This section summarizes the specific methods used in performing the

requirements analysis (which is applicable to both conceptual and system

requirements definition phases).

3-3

3.2.1 CASE Static Hybrid Object Oriented Structured Analysis

The first step in applying the static Hybrid, Object Oriented, Structured Analysis

methodology lies in building modified data and control flow entity diagrams. Then

control state transition diagrams must be developed to describe the control changes
which govern system or subsystem operations. Finally, the data repository must be

populated with real requirements data. This section describes these development

processes.

To illustrate the building of such an analysis structure, the example of an avionics

system will be addressed, with the simplification that avionics is treated as the

electronics subsystems and human interfaces of a space vehicle and excluding the

avionics hardware subsystems such as Guidance, Navigation and Control or Thermal
sensors and effectors.

3.2.1.1 DATA AND CONTROL FLOW DIAGRAMS.

Merged data and control flow entity diagrams are often referred to as process flow
diagrams, which are somewhat different in fact. This analysis will use bubbles to

illustrate and describe the process entities being analyzed. The process entity

bubbles may represent either data processes or control processes. Although referred

to as data/control flow entity diagrams, the bubbles are thought of as entities (with

noun names) to clarify they encompass more than just data or control processes, and

include other requirements as previously described more related to object oriented

development.

In some tool conventions (e.g., Excelerator), data processes are represented as solid

line bubbles, while control processes are represented as dashed line bubbles.

However the term "control" in many (if not all) automated implementations of CASE

analysis uses a definition for a control process as one in which hardware or software

components are directly controlled by the control process sending or receiving signals

to activate, deactivate or monitor companion processes at the same level on a

diagram. Thus control processes by this definition cannot be exploded into lower level

controls, but only into control state or logic matrices representing the detailed truth

tables for their connectivity. This restricts the analyst's ability to determine the

requirements for a system since he cannot define a control structure and then

3-4

determine the control entities which comprise it. For example, the use of a high level

system management control entity is common, and is often exploded into entities such

as operating system controls; network operating system controls; and fault detection,

isolation and recovery (FDIR) controls. The use of control processes is represented in

these approaches with a data process bubble (solid line shape) which is exploded into

lower level controls also represented by data process bubbles, and only shows up as

a dashed bubble when the lowest level is reached for controls with specific signals

being sent and received.

The first step in creating data/control flow entity diagrams is to gather together all the

processes, events, major data items, and any other information which can then be

used to identify logical groupings (i.e., entities) of user information handling. These

groups of information handling should define user needs for processes and the related

data being processed. An example of a table of space system user information

processes grouped together is shown in figure 3-2. These processes are not intended

to be definitive space processes but simply a checklist of processes against which the

subsequent requirements analysis can be measured to determine if all "traditional"

space functions are accounted for or accommodated. The data and processes remain

linked together in entities in this analysis. The logically groups of user information

entities are then accumulated into higher level categories as suggested by the

functional checklist shown in the figure. It is desirable for the major categories to relate

back to the NASA organization groupings or work divisions to simplify interface

development and control.

This functional check list also suggests some of the partitioning into higher level

entities. A vehicle control entity appears needed to coordinate the subsystem

applications operating on the vehicle and to deconflict their activities. This vehicle

control subsystem would also provide a means of human operator coordinated control

over all vehicle applications or operations. It also suggests that another higher level

function needed is one of operations control to coordinate all activities and processing

inside the space vehicle with each other and with outside activities and processes.

This operations control would also provide the place for requirements for logic "glue"

as needed to enable the activities and processes to respond to humans and which

3-5

3-6

may not be obviously a part of an individual subsystem's applications. (To repeat an

earlier point, this checklist is being used to develop a structure for gathering

requirements, which can then be used for an integrated view of the avionics

requirements.)

The shadowed elements in Figure 3-2 represent functions sometimes required of

present vehicle (i.e., Space Station Freedom or Shuttle) data management systems

(DMS). Note that this structure does not correspond exactly to the station software

partitioning, and is not precisely the same as the implied partitioning of the station

requirements specification in JSC 31000, Vol 3, Rev E. Its purpose is to focus analyst

attention on data service requirements and related or ancillary processing

requirements.

Other systems on a platform, not treated as part of the avionics but which are closely

coupled to or controlled by the avionics, include the systems such as the platform

structure, power/propulsion, environmental control, the crew, fluid mgt system, etc.

The next step is to develop the Level 1 Context Diagram. This diagram depicts the

highest level view of the system, where the system is a black box in its environment,

with the emphasis here to define the external interfaces and the information needed by

the system or by the environment from the system. The entities in the external

environment should reflect real world entity abstractions (such as shuttle) or platform

real entity abstractions (such as thermal hardware subsystem). Partitioning between

the system as black box, and the external entities should be based on explicit criteria

(e.g., external entities to avionics are the hardware and embedded firmware for the

subsystem sensors and effectors). The interfaces should be defined simply in the

diagram using the naming conventions in the appendix, and should carry the names of

both the system as black box and the external entity to enable data base searches

keyed on names. The CASE tool data repositories are usually name sensitive, so this

enables use of the repository to store and retrieve data needed by external elements

and by the system as black boxes.

Then the subsequent step is to develop the next level of diagrams (level 2) which

define the system entities, their processes, and their attributes in diagrams and their

performance and standards requirements in the data repository. The higher level

3-7

interfaces on the level 1 diagram should be carried down to this diagram, with the level

1 data flows being broken open (exploded) into more detailed data flows relevent to

each of the system entities used in the system diagram. Key system elements should

be identified, organized by clearly distinguishable categories based on explicit criteria.

The data flows between system entities define the needs for data by each system, and

the needs to generate data by each system.

All subsequent steps involve developing lower level diagrams (level 3+) with entities

representing subsystems/subprocesses, their attributes, their performance

requirements and applicable standards. At each level, entities and data flows must be

defined based on objective criteria. The bottom level will have been reached when

relatively "primitive" entities represent simple processes and data flows can be

identified. Primitive entities can be easily described in "primitive process

specifications" as part of the explosion process in the CASE tools. Definition of

primitive processes depends on a specific subsystem being defined and the depth of

knowledge existing on its requirements.

Some specific notes about the explosion process used in defining lower level

diagrams in a Hybrid, Object Oriented, Structured Analysis are addressed next. The

same level (e.g., level 5) in different trees (e.g., one in vehicle control and one in

system control) are not necessarily equal, because the decomposition process in

different trees may be attempting to achieve different local objectives, describing

different requirements. Each tree structure is intended only to aid in the understanding

of the requirements for the set of elements in that tree.

It is important to distinguish between logical and physical data flows. While logical

flows usually only show originator and end user of data, they may need to show

physical entities such as data stores if the data stores are an intermediate "user" by

holding data for long periods of time (which acts to partially de-couple the source from

the ultimate end-user). While physical flows usually show routing of data between two

entities, they may also only act as pass-through entities. Usually logical flows are

associated with requirements and physical flows are associated with design.

If only requirements are wanted, then analysis should only address logical flows. The

OS services normally address physical flows, however, their purpose is to support the

3-8

applications. An OS must be designed, which means the OS requirements need to be

defined. Since the OS doesn't care what services are provided or data is passed,

analysis can develop logical OS services and flows based on generic or categorized

data being passed. In this case, the OS physical flows are also logical flows. While

the applications requirements derive from the users' needs, service requirements

derive from the applications needs. Thus, in a complete architecture, the requirements

for services as well as for applications need to be defined.

Logical flows may have constraints (i.e., requirements) imposed on them by higher

level processes in their own tree or by processes in any other tree at any level which

interacts with the flow.

The use of data stores in a logical structure distinguishes between two cases: (1)

where data goes from originator to end-user because such passage benefits both

entities, and case (2) where data goes from originator to data store and independently

goes from data store to end-user because the source does not care who uses the data

and the user does not care where the data comes from as long as it is timely and

accurate. A user of data must either (1) select the data needed based on real time

considerations for similar data and based on predefined criteria, or (2) select the data

needed based on specific predefined items to be used at specific predefined points in

processing. If real time criteria are used, they must be subject to adjustment to enable

the crew to make changes based on their specific mission needs during the flight

profile being flown.

After data and control flow entity diagrams are built, they must be informally validated

or tested by the developer to determine if the logic is sufficiently robust to stand against

changing requirements as a baseline for a time. If every change in requirements

causes a architectural change (i.e., a change in the data and control flow entity

diagrams) then the system is insufficiently defined for use. One technique to validate

the logic of the analysis and breakdown diagrams is to create operating thread

diagrams as describe in a later section.

3.2.1.2 Control State Transition Diagrams

State transition diagrams are used to develop the requirements for the control logic

involving changes from one steady state of operation to another in response to

3-9

commands from the crew. They involve developing stimuli-response tables for each

command stimuli the crew may initiate, and linking the crew commands to operating

and system responses.

TBD in FY 92.

3.2.2 TECHNIQUES FOR REQUIREMENTS ANALYSIS

The specific techniques needed to perform requirements analysis include those

described below.

3.2.2.1 Entity Partitioning

The partitioning of the system and lower level entities into subsystem and process

oriented entities must accommodate not only the standard structured analysis

partitioning addressed previously, but also partitioning of groups of functional topics

into related multiple layers with cascading functional capability.

This means, for a functional area such as safety, that there is a manager function, a

lower level controller function, and yet lower level handler subfunctions. Consistent

application of such partitioning is needed for requirements consistency, and for

determination whether the requirements are complete. The analysis for this

methodology has derived a structure of four layers to accomplish this:

1. Mission

2. Vehicle (including systems)

3. Subsystem

4. Component.

Thus the safety functional area could be divided into a mission safety manager, a

vehicle safety controller and a subsystem safety controller. There is no component

safety controller, which indicates that not all four layers are required. Another example

is fault handling: there could be a vehicle fault manager, a subsystem fault controller,

and a component fault tester (known as built-in-test - BIT). The functions in these

3-10

examples could also be linked by noting that the vehicle fault manager supports the

vehicle safety controller by providing fault alerts and warnings.

3.2.2.2 Facility to Vehicle Partitioning

Another partitioning approach that must be supported is a capability to partition and

allocate entities or functions to any reasonable type of facility implementation of

processing. The range of processing may stretch from standalone space platforms

with no dependence on Earth-based facilities, to vehicles with high dependence on

Earth-based facilities.

For example, a Lunar or Mars base might be established by the requirements analysis

to be entirely self contained with no dependencies on Earth-based processing or

mission control. A Lunar Transfer Vehicle might have extensive on-board GNC and

Operations Management System (OMS) processing or might just contain

implementation software for the processing determinations computed on Earth and

relayed to the vehicle through an Integrated System Executive (sic - ISE) determined

on Earth. Alternative allocations are possible based on different sets of criteria,

depending on the level and types of decisions being made, whether as policy

decisions out of NASA Level 1 or 2, or as technical decisions from timeline analysis.

The methodology established in this paper must support any type of allocation without

redoing the analysis. Thus, for a Command Control function, figure 3-3 might

represent the entities to be processed in Command Control. The mission plans

manager could be implemented by allocating the requirements to the space vehicle or

by allocation to the mission control center. Alternatively, some of the requirements

could be allocated to the space vehicle (e.g., select keys), some to the mission control

center (e.g., generate timeline) and some to the "back room" support personnel (e.g.,

coordinate the plans library entries). The requirements for this subsystem entity would

be essentially the same in any case.

3-11

Command Controller

& Interpret
Plans Manager

Opns

Msn Safety
Manager

Manager
Support Opns Info Subsys

Manager info Mgr

Reports Generator

J

Figure 3-3.- Operations Control May Span Altemative Allocations.

3-12

3.2.2.3 Operational Thread Use

Operational threads are needed to validate the logic of the analysis and breakdown

diagrams. The threads need to focus on how the crew or the system would perform

specific operating tasks, not on simply how a entity or process executes. The intent is

to focus on crew-task interactions, not just on entity or process interactions. Thus, for

instance, if a task is "crew fires thruster n", then the thread to perform this task might

look like figure 3-4. This provides an operationally oriented means of discussing the

logic of the task with operational personnel to validate the entities and processes

created in the analysis.

Another example involves developing an operating thread for a crew-system task,

namely how the system responds to a resource failure with crew interaction. Thus,

figure 3-5 identifies this thread. This thread seems to emphasize failure detection as a

key element. Analysis of failure detection might then determine there are several

alternative means of detecting failures as discussed in the next paragraph. In addition

to being used to verify that all the needed entities and processing/attributes have been

identified in their proper places, these alternatives give rise to a Fault Handling

Architecture, which must also be reflected back into the Hybrid, Object Oriented,

Structured Analysis diagrams.

Alternatives which must be considered for detecting failures (for example) might

include managing the types of testing available to perform fault detection, controlling

the schedules of testing to prevent interference with operational mission activities,

running tests at low levels in hardware, determining trends indicative of failure even

though individual tests do not show a failure. Figure 3-6 represents an architecture

derived as a result of this analysis and reflected in the Hybrid, Object Oriented,

Structured Analysis developed for this methodology.

3-13

mint

OC

oO_o__ ® "_
• q0

Zm_-"

¢ .C
g,a ,

occE_N

omG -,_B
> _-- 0¢3,.

m
,Din
i¢¢¢

o_0_
'm E_e =

') fJOu_

C _
o_.o=

C_0_
._- I--

Q)
o _-
0 Q)

I,i °_

O) ll

!

_=
O3

Ii

3-14

_=_o
=°r_
"o

°0_

_>,o_____

0

3-15

CHANGE 1 - JANUARY 1992

"- U)
"1o

(b=

o')'_
._c::LL
u)
u) (1)

¢.) ::3
2o

-_n-
¢" o
.o .,-.

"o

o.o
o_

, (1)
,_n"
_E

(/)

_P

Q.

E

X
iii
11)

<3.)

t-

<l::

I-
o_

t:::

-r"

ii
!

13)

II

3.2.2.4

(TBD)

Ri_;k Management Re0uirements Definition

3.2.2.5

(TBD)

Fault Tolerance/Redundancy Management Reouirements Definition

General requirements for fault tolerance, failure handling, redundancy management,

and recovery will be addressed, and unique requirements to tailor the general

requirements to a specific platform will be discussed.

3.3 PRQTOTYPING AND SIMULATION IMPLEMENTATION

TBD in FY 92.

3.4 pERFORMANCE ANALYSIS IMPLEMENTATION

TBD in FY 92.

3-17

°

APPENDIX A

DEFINITIONS, ASSUMPTIONS AND CONVENTIONS

APPENDIX A

DEFINITIONS, ASSUMPTIONS AND CONVENTIONS

This appendix describes the definition and conventions adopted in this methodology.

A.1 DEFINITIONS

The terminology used in developing this methodology is defined herein, based on

industry standards wherever feasible. Determination of the scope of architectures,

avionics, systems, services and applications depends to some extent on the definitions

accepted for these items since definitions can focus attention or exclude attention.

A system is the composite of equipment, material, computer software, personnel,

facilities and information/procedural data that satisfies a user need. (Electronic

Industries Association Bulletin SYSB-1)

The System Engineering Process is the methodology of sequential and iterative

application of selected scientific and engineering efforts to convert user needs into a

system solution that will best satisfy the requirements and constraints in accordance

with "agreed to" effectiveness measures reflecting the users needs. The process

needs to be divided into the macro steps of system requirements analysis and system

design. (Electronic Industries Association Bulletin SYSB-1)

An Open Systems Architecture is defined as a structure of interconnected functional

subsystems (i.e., black boxes) using non-proprietary communications, based on open

interface standards, i.e., standards that are complete and consistent, published and

accepted by a publicly accessible review body. Interfaces to the target's operational

environment must be based on open interface standards. The architecture must be

extensible through the addition of subsystems, services and resources following

published rules. It must be precisely described and maintained by an openly

accessible oversight board. Different vendor black box subsystems should be able to

be added without knowledge of the subsystem internal structure or design. It consists

of a system hardware architecture and a system software architecture.

A System Hardware Architecture is a set of hardware resources in a configuration of

distributed computers, memories, buses and network elements. Some of the

A-1

characteristics that determine the nature and requirements for a system hardware

architecture are the number of processors, their type and topology, the speed and size

of shared memory available, the local memory of each, the bandwidth and access to

communications media, and the interfaces available for use by people, applications

and platform software services in the hardware.

A System Software Architecture is the set of system functions performed by the

applications software, and the structure of the platform software services that enable

the applications software to perform their tasks. The functionality described by the

system software architecture are the tasks which are required of the system to meet the

needs of operational users.

A Laboratory_ Architecture is defined as a structure which is capable of being

configured to represent a subject open system architecture. Thus, it must include (but

not be limited to) non-proprietary standard communications, processing and

interfaces. Interfaces to a simulation of the subject's operational environment is

included. The lab architecture must include instrumentation, benchmarks,

test/simulation controls, displays, and data analysis capabilities. It must be extensible

through the addition of subsystems, services and resources following published

rules. It must be precisely described and maintained.

An Avionics System is defined for the purpose of this methodology as the set of all

electronic and processing based subsystems on a space vehicle, including all

hardware, software and other electronics needed to control and operate the space

vehicle. It is the collection of capabilities that provides the coordinated functionality for

end-to-end processing in handling the information needed to know the platform's

elements, to control its interaction with its environment, and to respond to human

commands. Avionics provide for information acquisition, transmission, and storage of

analog or digital signals and include the sensors, intra-platform communications,

processing hardware, software and subsystems, data storage, human-machine

interface subsystems, and response actuator controls used in the platform. (Adapted

from JSC 31000, Vol 3, Rev E, Para 3.1.24.1.1)

The Snace Generic Avionics (SGA_ architecture is defined as the target Open

Architecture Standard being developed to establish the preliminary methodology. It is

a generic architecture, meaning that the elements of the architecture do not depend on

A-2

any one mission or program for their definition. The elements of the architecture can

be tailored to apply to many different space missions and programs. Tailoring may

result in subsets of requirements applicable to a mission or program, but will retain

architectural interface compatibility. The initial focus of the SGA architecture is for

Space Vehicles; Other-Planet Bases are part of the SGA architecture but are not being

addressed for now until the initial SGA architecture has been developed.

An _ is an abstract element that represents a real world entity, its data attributes

and essential services with their respective performance and quality characteristics.

is used similarly to the term object from object oriented analysis, without intending to

convey the implicit assumptions associated with object by practitioners of object

oriented analysis and design.

It

A distributed system is a collection of computers, memories, buses and networks that

are concurrently operating in a cooperative manner and communicating with each

other. The system may be tightly coupled with shared memory capability or loosely

coupled with messages used for coordination.

A data orocess subsystem is a subsystem with embedded data (determined by naming

practices) and processing services, decomposable into lower level data process

subsystems. Requirements attached to a data process subsystem are inherited onto

lower level subsystems. It is setup and controlled by a runtime operating system.

A management subsvstem is a data process subsystem which may interface to a

human to determine options and select alternatives for implementation. A

management subsystem which has no human interface may support one which does

have a human interface, or it may be an artificial intelligence capability which replaces

a human, perhaps in unmanned missions.

A c;0ntrol subsystem is a process which selects and implements alternatives based on

a-priori criteria or real time guidance from a management subsystem. Control

subsystems may be decomposed in lower level subsystems. A control function usually

implements a unique avionics capability. Requirements attached to a control

subsystem are inherited onto lower level control subsystems.

A handler subsystem is a data process which implements a predefined, directed

procedure, either from a control subsystem or a management subsystem.

A-3

A service subsystem is a process which implements supporting alternatives

transparently to the using control or data process subsystem. Service functions are

usually widely replicated in support of many control or data process subsystems. This

wide replication of functionality is a key determining characteristic in defining an

individual process as a service in this methodology. Services are cdtical to system

operation, not to mission or vehicle operation per se. An example of a service function

is a Report Generator since many applications and control subsystems must generate

reports; here, they call on the report generator service which knows how to look up the

table defining the applications/control report, how to format the format for completion,

how to find the data to fill the report fields with, and how to route the report for

distribution based on a predefined distribution list.

A logical interface is defined as the characteristic requirements associated with an

interaction between a source of data and the end user of the data. Data is used by an

entity in a logical manner if it makes a significant transformation, conversion or

operation on the data.

A physical interface is defined as the routing requirements associated with passing

data from the source of the data to the end user of the data. Data is used by an entity

in a physical manner if it passes the data on without changing the data; thus for

example, network operating systems are physical interfaces to applications because

they package or unpackage data and send it to another network node.

(_oncurrent enaineerina is defined as the application of multiple engineering

disciplines to develop requirements in several different but related areas at the same

time so the requirements are coordinated and mutually supportive.

A.2 AR(_HITECTURE ASSUMPTIONS

The architecture development was used as the vehicle for determining what practices

actually worked which should be included in this methodology. Assumptions about

the architecture were necessary to permit continued development of concepts and

entities, and were selected to place as little restriction on the underlying methodology

as possible. However, in case they may have constrained the methodology, they are

identified below. This section summarizes the architecture assumptions in three

categories:-those assumptions related to the operation of a space platform, those

A-4

related to the processing to be performed, and those related to how the structure of the

architecture was to be assembled.

A.2.1 OPERATIONS

• Human control requirements can vary. Direct links from the human entry systems

to the sensor and effector firmware/hardware or any intermediate point on the

processing chain may be needed for emergency and manual backup purposes.

The range of control must accommodate any level of capability from manual to fully

automated (e.g., through artificial intelligence aids similar to the Lockheed Pilot's

Associate being developed for the U.S. Air Force).

• Operations control requirements must span the range from on-board controls to

mission control center to the "back room" control support. Partitioning between

these facility control requirements should be done when applying the requirements

to a specific platform or mission, or should be delayed until a design

implementation is being prepared to maximize developer flexibility.

A.2.2 PROCESS

The architecture must enable objective definition and interoperable processes for

each entity selected for inclusion in a specific instantiation of the architecture for a

specific platform.

All entities have processes which can be applied to multiple vehicles with control

parameters used to adjust between the same type process used in different classes

of vehicles.

• Sensors and effectors are assumed to have firmware embedded in them for low

level hardware control; this firmware processing is treated (for requirements and

design purposes) as an integral part of the hardware. Sensors firmware

processing may also enable or disable hardware, monitor power drain, monitor for

abnormal conditions, implement built-in-test (BIT) of hardware and store results

(these may alternatively be performed in the intermediate processors as described

below).

• The architecture must handle altemative forms of processing and alternative

allocations of these processes to different elements of the overall system for each

mission-design. Low level orocessing is assumed to be embedded in sensor and

A-5

effector heads; such processing in firmware will be relatively "dumb" with sufficient

capability to gather data, format it for transmission, and route it to appropriate

controllers. Intermediate level orocessina includes processing such as sensor

signal processing, effector response actuator processing, post sensor processing

(e.g., track processing), multiplex data processing etc.; such processing is treated

as a high level control structures (i.e., Control Application Programs) requiring

some decision making capability to implement one of a number of alternative

hardware control parameter sets in an intelligent system. Hiah level Drocessina

includes two types of processing: one which provides a capability for the crew to

control the vehicle or facility, and one for internal systems control of all activities.

Processing such as needed for systems control, vehicle control, integrated logistics

control, crew management, etc. are treated as high level command structures (i.e.,

Command Application Programs), which require interaction with humans and some

capability to present alternatives to humans, and to interpret ambiguous responses

from humans. Command application programs provide both types of high level

processing. Figure A-1 depicts the processing architecture assumed which the

Space Generic Architecture must handle, and which the methodology for

development must be capable of analyzing.

W

0

m

E®
oE

I.U u.I

Z

0

0
c

C_

_.o

rl o

c

®

o _.-
I:1..,,-..

!
.

°_

U-

|

0 _ II II

A.2.3 STRUCTURE

• One of the purposes of this methodology is to enable the creation of an open,

generic, standard architecture which can be tailored and reused for multiple

missions. The methodology will then provide guidelines for doing the tailoring to

create mission specific instantiations of the architecture. The reuse of the

architecture and its components will become the standard way of developing new

space data systems.

• The basic architectural guideline for differentiating processing levels is based on

the philosophy of "Centralized Command and Decentralized Execution"

• The architecture must be a "shopping list" of all possible processes applicable to

any space vehicle or other-planet base.

Some entity processes only apply to a specific class of vehicle. Such special entity

applications should be built into the naming conventions if feasible to more clearly

convey the dependency of the entity application to the specific platform. The

definition of entity names must use unique names for each entity for clarity and for

tool searching of dependencies.

• The software principles of abstraction, information hiding and modularity are

applicable to systems development and will provide the same benefits to

requirements analysis and system design as they do to software analysis and

design. Use of such principles will improve the maintainability and reusability of

the architecture developed and used as the example for this methodology.

Improvements in maintainability and reusability will not be allowed to reduce the

requirements for performance which may be necessary; proof through architectural

simulations must be provided that performance of an architectural instantiation is

acceptable. Hard real-time constraints on system performance will exist and must

be met.

• A hardware architecture was assumed consisting of a core network, multiple

standard data processing (SDP) elements not necessarily of the same type,

multiple buses, multiple multiplex data processing (MDP) elements, embedded

sensor processing (SP) and embedded effector processing (EP). This is

represented in Figure A-2. The interface plugs shown represent the unique

A-8

hardware interfaces which must be defined by standards and handled in

processing. The triple dots represent continuation marks.

A-9

A-IO

A.3 CONVENTIONS

The initial definition and development of concept and architecture higher level

requirements is done on a desktop machine with computer aided systems engineering

(CASE) tools immediately at the analyst's fingertips to facilitate use of the tool at any

time additional thought leads to new insights. For this analysis, the Excelerator CASE

tool from Intersolv was used for this preliminary analysis. Later, revisions of the

requirements were performed at a laboratory machine using the Teamwork CASE tool

from CADRE Technologies. Each tool has its strengths and weaknesses (as

discussed later) which were optimized by this approach.

The data which should be defined in a requirements analysis is stored in one of two

ways. First, data can be stored in the CASE tool graphic screens using the entities

and links between entities to represent required entities and required interfaces.

Second, the specific requirement characteristics to be met can be stored in the tool's

data repository attached to each specific entity and interface where the requirement is

appropriate. The specific requirements which need to be stated generally address:

• Entity/Interface Purpose

• Associated Processes (for entities)

• External and Internal Environment (for entities)

• Qualities

° Timeliness

Performance (Qualitative and Quantitative)

Extension/Adaptation

Attributes (Inputs and Outputs for entities)

Source/Destination and Standards for Interfaces

Requirements Source (Analysis, Document, Study, Trades, etc. with specific

retrieval data)

A-11

Access to services should be through the appropriate application program interface

(API), using standard service calls, not through direct access hardware interrupt or

message activities unless provided for through standard service setup sequences (i.e.,

follow the rules). If performance requirements cannot be met through standard service

calls, then direct access procedures may be required on an exception basis. The

standard architecture must not preclude direct access alternative designs. Direct

access alternatives should only be designed with explicit Project Management

approval and enabled with explicit human control.

Software Reusability can include Algorithm Reuse, Top Level Design Reuse, Detailed

Design Reuse, and Code Reuse. Where software reusability is an issue in

architecture development and requirements definition, it must be defined explicitly.

Consistent and explicit definitions and partitioning of systems such as the Data

Management System must be provided; they may be based on the generic definitions

and results of the Space Generic Architecture. They should not be handled in a

different manner from one mission or vehicle to the next. (Existing definition/scope of

DMS has varied from one vehicle (i.e., Shuttle) to another vehicle (i.e., Station)).

A-12

APPENDIX B

CASE TOOL SUMMARY

APPENDIX B

CASE TOOL SUMMARY

B.1 TQOL$ USED

The tools used in this analysis included Excelerator/RTS, Teamwork/SA, Excel

spreadsheets and Coreldraw and Powerpoint.

Excelerator/RTS is used on the IBM 386 PC or compatible using color graphics for

development clarity. Teamwork/SA is used on the Apollo 3500 in monochrome. Excel

is used on the IBM 386 compatible for developing lists of processes, purposes, and

data lists. Coreldraw and Powerpoint are used to develop graphic diagrams depicting

miscellaneous logic charts, such as the operational processing threads.

B.2 OTHER TQQLS CONSIDERED

Other tools being considered for the next stage of development of this methodology

include Statemate, Matrix-X and RDD-100. These tools will be used to implement

dynamic modeling of the static architecture.

Statemate is TBD.

Matrix-X is TBD.

RDD-100 is TBD.

B-1

APPENDIX C

REQUIREMENTS DOCUMENTATION USED

APPENDIX C
REQUIREMENTS DOCUMENTATION USED

C.1 SHUTTLE

GNC Overview Handbook, GNC OV 2101, April 25, 1983.

Space Shuttle Avionics System, John F. Hanaway, Robert W. Moorehead,

NASA SP-504, 1989.

C.2 STATION

Space Station Freedom Command and Control Data Flow Report, JSC-24673,

April 17, 1991.

DMS Operating System/Ada Runtime Environment Software Requirements

Specification, MDC H4189, 150A141A, August 22, 1990.

DMS Network Operating System Software Requirements Specification, MDC H4188,

150A191A, August 22, 1990.

DMS Standard Services Software Requirements Specification, MDC H4191,

150A241A, August 22, 1990.

DMS User Support Environment Software Requirements Specification, MDC H4192,

150A391A, August 22, 1990.

DMS Data Storage and Retrieval Software Requirements Specification, MDC H4187,

150A441A, August 22, 1990.

DMS System Management Software Requirements Specification, MDC H4190,

150A341A, August 22, 1990.

DMS Interface Requirements Specification, MDC H4193, 150A202A, August 22, 1990.

DMS MODB Manager Software Requirements Specification, MDC H4481, August 22,

1990.

Interface Requirements Document (DMS, SDP and MDM), MDC H4643, August 22,

1990.

Subsystem Level CEI Specification (Type B), Critical Item Development Specification

for Network Interface Adapter (NIA), 152A404-PT1, October 27, 1989.

CEI Specification for Data Management System, Volume 1: Data Management System

212001A, WP-2, (DR-SY-06.1), SSFP SP-M_001.

c-1

C.3 QTHER

ACRV Technical Proposal, LMSC-F370228, November 16, 1989.

Space Avionics Requirements Study, NASA-37588-TD006, GD Space Systems

Division, October 2, 1990.

OMV Design Review, No Date, No Document Number, TRV.

Advanced Launch Development Program Industry Conference Briefing, May 20, 1991.

c-2

APPENDIX D

NAMING AND DIAGRAMMING CONVENTIONS

APPENDIX D

NAMING AND DIAGRAMMING CONVENTIONS

When attempting to analyze a system of the size and complexity of the generic space

avionics architecture it is easy to get lost in the numerous layers and processes

represented by the data flow diagrams. For this reason, it becomes very important to

establish naming conventions which will aid in the understanding of these diagrams.

D.1 PROCESS NAMING CQNVENTIONS

The first rule when naming processes is that all processes must have unique names.

When looking at the system as a whole, this would not necessarily be a requirement,

because the process in question would be viewed in context with the rest of the system

(e.g. process G is a part of process X and consists of processes A, B, and C). However,

it turns out that making the names unique simplifies the procedures for coming up with

unique data flow names. In addition, it also has the obvious benefit of removing any

ambiguity in the process names when viewed out of context. It is also helpful when

naming processes to use descriptors which have a common implied meaning

whenever possible. Although the following descriptors are not required to be used in

all process names, when they are used they imply the following meanings:

Manager - Interfaces with the crew to determine options and select an alternative to

implement. (Direct interface with Crew D&C)

Controller - Process that selects and implements alternatives based on apriori or real-

time criteria. (no direct interface with crew)

Handler - Process that implements selected procedures.

Some specific conventions are:

• In name concatenation, go from greater to the lesser class of names to facilitate

searching by names.

In naming processes, use acronyms if possible for id prefixes to relate the

"buzzword" in common use to the process in which it falls. For example use "GNC"

as the identification for the GN&C subsystem and "GNC 1" for the Guidance

D-1

function- "GNC 2" for the Navigation function, and "GNC 3" for the Control function

(assuming these three functions comprise the GN&C subsystem).

In laying out a diagram, show inputs from external entities (to the instant diagram)

on the left and outputs on the right. Have processing move from left to right. Draw

process entities first, arrange in the proper flow, then show the interfaces to

external entities coming in and going out, check that all data in and out is

accounted for and handled properly in a function, then connect up the processes

with interior connections of entities.

In Excelerator, develop the process entities, then the data flows, then describe the

entities to ID them, then explode the entities to start a lower level process chart.

The name of an entity in an explosion paths should be the same as the name of the

parent entity from which it is being exploded, since the single entity being exploded

and the lower level explosion diagram represent the same thing.

Avoid using the same or almost the same name to represent different things unless

intentional because the CASE tools use names to identify entities, and similar

names will likely confuse the user, although the tool will not have any problems.

Most tools are case-sensitive, so be careful with capitalization use.

Show entity of interest surrounded by other entities with which it interacts.

Treat entity of interest as a monolith to define its external environment.

Naming should address entity of interest with a name (label) and an ID that can be

appended to form lower level explosion entities; names should be brief to reduce

typing burden.

Use leading capital letters for entity names (labels) and all caps for IDs.

First identify entities, then develop their 2 way data flows.

Indicate data flow names by using the names of the entities at either end of the flow

separated by a dash, or by one sides' entity.

Describe data flows to consist of either (1) two or more one way data flows using

undersco[es instead of dashes with the entities in the name in reverse order to

D-2

indicate directionality subsequently partitioned by type of flow, or (2) two or more

flow types subsequently partitioned by direction of flow and separated by

underscores to indicate directionality.

Use all capital letters for data naming

D.2 DATA FLOW NAMING (_ONVENTIONS

The naming of data flows has been the focus of much study and thought during the

course of developing the structure of the generic data system. Although this may seem

an insignificant, if not trivial task at the outset, it turns out to be quite challenging in

practice. A logical and consistent naming convention for data flows, aids in the

understanding of the diagram. The problem of naming data flows is twofold. First of all

each data flow name must be unique. This is a requirement from a logical point of view

as well as a hard requirement when using a CASE tool. Secondly, the name should

convey as much information as possible about the processes it connects and its

relative hierarchical position in the structure. It must do so, however, without being so

long as to make the data flow diagram unreadable.

For the purpose of this discussion it is assumed that the reader is familiar with data

flow diagrams. The following figure (figure D-l) presents three data flow diagrams in a

hierarchical progression. In this case the data flows are labeled alphabetically to aide

in the subsequent discussion.

D-3

_-

I, q I

I I "

' iI/
U.!

s

Ii

D-4

In this example, process 3 "explodes" into the lower level dia.gram containing

processes 4, 5, and 6. Data flows may also be "exploded" in a similar manner, for

example, the data flow C might consist of data flows H and J in the lower level

diagram.

A data flow connecting two processes on the same data flow diagram is an internal

data flow. Examples of internal data flows would be C, E and K. A data flow for which

only one end is connected on a given data flow diagram is an external data flow.

Examples of external data flows would be D, J and M.

The following attributes for data flow names would be desirable:

Internal data flows should be named according to the subprocesses they connect.

A natural hierarchy of names would be helpful, i.e. when looking at the index of names

they should fall alphabetically into the proper hierarchical structure.

External data flows should be traceable from level to level by the name alone. This

permits tracing of the flows visually on the hardcopy without resorting to the data

dictionary entries.

Ideally, the entire name of the connected processes could be used. This would

eliminate any ambiguity caused by shortening the name. This is not, however,

practical because of the length of the process names. Instead, a short version (3 to 4

characters) of the name is required. In general an acronym consisting of the first

character of each word in the process name will suffice (because each process name

is required to be unique). In some instances, however,, this will not guarantee a

unique name. Take for example the data flows between processes named Vehicle

Safety Manager and Vehicle System Manager. The acronym for each of these would

be VSM which could lead to ambiguities in data flow names. For this reason, the

shortened process names (acronyms) must themselves be unique. For the above

example, one might use VSFM and VSYM for instance.

The following guidelines have been developed for naming data flows.

A unique shortened name will be created for each process. Using figure D-1 as an

example, the processes would all be given unique names of the order P1, P2, P3,

etc. --

D-5

• When these names are connected to form a data flow name, they are separated by

a hyphen.

Internal data flows will be named starting with the diagram process name followed

by the connected process names. The internal data flow E would then be named
P3-P4-P5 or P3-P5-P4. The order of the connected processes P4 or P5 is not

important.

External data flow names will start with the name they had in the previous level

diagram, with the connected process name acronym as a suffix. For example, if

data flow G was comprised of data flows N and M, and it was labeled P3-P5-P6,
then data flow M would be labeled P3-P5-P6-P8, and data flow N would be labeled

P3-P5-P6-P7.

Figure D-2 presents an example of this method applied to a set of data flow diagrams

with representative process names.

These guidelines will produce unique data flow names between processes. In

addition, when looking at different levels of the diagram it is possible to trace higher

level data flows into constituent data flows. This method will also partially provide for a

natural hierarchy of names alphabetically.

D-6

E
x
111

E

c_

r7

.9
IJ.

r7
!

a
111
OC:

0

D-7

Several alternative naming convention methods were tried, One of which is described

below.

One method that was tried was to begin the data flow name with

the acronym of the process diagram on which they appeared. For

internal process names, this is the same as was presented above.

For external process names, however, this represents a significant

change from how they are currently defined. The problem with this

method is that external data flow names lose their traceability to

the parent diagram. (of course the CASE tool can still trace the

names, but visually the traceability is lost on the hardcopy). In

addition, when looking at an index listing of the data flow names,

the natural hierarchy is lost.

D-8

DISTRIBUTION LIST FOR

-- REQUIREMENTS ANALYSIS

FOR THE FLIGHT DATA SYSTEMS

IN THE

REAL-TIME SYSTEMS ENGINEERING

(RSEL)

CHANGE 1 - JANUARY 1992

LESC-29702

NOTEBOOK

DEFINITION

LABORATORY

EK111/D. M. PRUETT (5)

EK231/D. A. STEPHENSON

PT41/E. M. FRIDGE

EG1/D. P. BROWN

NASA

EK711/R. E. COBLENTZ

EK121/D. A. DYER

AMES/E. S. CHEVERS

EG 111/K. J. COX

MITRE

S. BELL

MITRE CORP.

1120 NASA ROAD 1

HOUSTON, TEXAS 77058

UHCL

CHARLES HARDWICK

UNIVERSITY OF HOUSTON -

CLEAR LAKE

2700 AY AREA BLVD. - BOX 444

HOUSTON, TEXAS 77058

MCC

COLIN POTTS

MICROELECTRONICS AND COMPUTER

TECHNOLOGY CORPORATION

3500 W. BALOONES CENTER DRIVE

AUSTIN, TEXAS 78759

C18/J. R. THRASHER

C18/E. A. STREET

C18/R. E. SCHINDELER

C18/G. Y. ROSET

B26/J. P. SASSARD

C18/J. STOVALL

C106/P. G. O'NEIL

LESC

C18/G. L. CLOUETTE

C18/R. W. WRAY (10)

C18/M. W. WALRATH

C18/B. L. DOECKEL

B08/R. N. LUTOWSKI

B11/H. E. SMITH

C83/S. J.THOMAS

C18/JEAN FOWLER (MASTER + 2 COPIES)

B15/LESC LIBRARY (2)

